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The advent of land plants ~474–515 Myr ago1 led to complex 
vegetational innovations that shaped emerging terrestrial 
and freshwater ecosystems. Bryophytes, lycophytes, ferns and 

gymnosperms dominated the global landscape before the ecological 
radiation of flowering plants 90 Myr ago2. The first complete plant 
genome sequence (Arabidopsis thaliana) was published in 20003, 
followed by reference genomes for all other major lineages of green 
plants, except ferns. A dearth of genomic information from this 
entire lineage has limited not only our knowledge of fern biology 
but also the processes that govern the evolution of land plants.

The relatively small genome (0.75 Gb)4 of Azolla is exceptional 
among ferns, a group that is notorious for genomes as large as 

148 Gb5 and averaging 12 Gb6. Azolla is one of the fastest-growing 
plants on the planet, with demonstrated potential to be a significant 
carbon sink. Data from the Arctic Ocean show that, ~50 Myr ago, in 
middle-Eocene sediments, an abundance of fossilized Azolla charac-
terizes an ~800,000-year interval known as the ‘Azolla event’7. This 
period coincides with the shift from the early Eocene greenhouse 
world towards our present icehouse climate, suggesting that Azolla 
had a role in abrupt global cooling by sequestering atmospheric car-
bon dioxide8. Azolla is also remarkable in harbouring an obligate, 
N2-fixing cyanobacterium, Nostoc azollae, within specialized leaf 
cavities. Because of this capability, Azolla has been used as ‘green 
manure’ for over 1,000 years to bolster rice productivity in Southeast 
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Asia9. The Azolla symbiosis is unique among plant–bacterial endo-
symbiotic associations because the cyanobiont is associated with 
the fern throughout its life cycle, being vertically transmitted dur-
ing sexual reproduction to subsequent generations10. In all other 
land plant symbiotic associations, the relationship must be renewed 
each generation. The Nostoc symbiont is not capable of autonomous 
growth and its genome shows clear signs of reduction, with several 
housekeeping genes lost or pseudogenized11. With a fossil record 
that extends back to the mid-Cretaceous period, Azolla probably 
shares a ~100-Myr-old co-evolutionary relationship with Nostoc12.

To better understand genome size evolution in Azolla and its 
closely related lineages, we obtained genome size estimates for all 
five genera of Salviniales (Supplementary Table 1). We found them 
to be at least an order of magnitude smaller than any other fern 
species (Fig. 1a), and, most notably, the genome of Salvinia cucul-
lata, which belongs to the sister genus to Azolla, is only 0.26 Gb, the 
smallest genome size ever reported in ferns. This unanticipated dis-
covery afforded us the opportunity to include a second fern genome 
for comparison.

Results
Genome assembly and annotation. To gain insight into fern genome 
evolution, as well as plant–cyanobacterial symbioses, we sequenced 
the genomes of A. filiculoides (Fig. 1b) and S. cucullata (Fig. 1c) 
using Illumina and PacBio technologies. The assembled Azolla and 
Salvinia genomes have N50 contig size of 964.7 Kb and 719.8 Kb, 
respectively. The BUSCO (Benchmarking Universal Single-Copy 
Orthologs) assessment and Illumina read-mapping results indi-
cate high completeness for both assemblies (Supplementary Fig. 1  
and Supplementary Table 2). We identified 20,201 and 19,914 
high-confidence gene models in Azolla and Salvinia, respectively, 
that are supported by transcript evidence or had significant simi-
larity to other known plant proteins (Supplementary Figs. 1–3, 
Supplementary Table 3 and Supplementary Discussion). Salvinia 
genes are much more compact, with a mean intron length half of 
that in Azolla (Supplementary Fig. 1). In addition to introns, differ-
ences in the repetitive content explain some of the nearly threefold 
difference in genome size. Azolla has more of every major cat-
egory of repeat, but 191 Mb of the 233-Mb difference in the total 
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Fig. 1 | Genome size evolution in Salviniales. a, Members of Salviniales have smaller genome sizes than other ferns (averaging 1C =  12 Gb)6. Two whole-
genome duplication (WGD) events identified in this study were mapped onto the phylogeny, with divergence time estimates obtained from Testo and 
Sundue129. b,c, Whole genomes were assembled from A. filiculoides (b) and S. cucullata (c). d,e, The genome of S. cucullata has substantially reduced levels 
of RNA (d) and DNA (e) transposons compared to A. filiculoides. Image in panel c courtesy of P.-F. Lu.
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repetitive content are made of retroelements, especially Gypsy and 
Copia long terminal repeat retrotransposons (LTR-RTs; Fig.1d and 
Supplementary Fig. 4). DNA transposon profiles are similar for the 
two ferns except that Azolla has substantially more SOLA elements 
than does Salvinia (Fig. 1e).

Insights into gene family evolution in land plants. The genomes 
of Azolla and Salvinia offer a new opportunity to examine the 
evolution of plant genes and gene families across all Viridiplantae 
(land plants plus green algae). We classified genes into orthogroups 
from 23 genomes (12 angiosperms, 2 gymnosperms, 2 ferns, 1 
lycophyte, 2 mosses, 2 liverworts, 1 charophyte and 1 chlorophyte; 
Supplementary Table 5) and reconstructed the gene family evolu-
tion—gain, loss, expansion and contraction—across the green tree 
of life (Supplementary Fig. 5 and Supplementary Table 5). To inves-
tigate the origin of genes linked to seed development, we exam-
ined orthogroups containing 48 transcription factors that express 
exclusively in Arabidopsis seeds13. Homologues of 39 of them were 
detected in ferns or other seed-free plants, indicating that many 
seed transcription factors were present before the origin of seeds 
(Supplementary Table 6). Similarly, only a handful of transcrip-
tion factor families arose along the branch that led to seed plants 
(Supplementary Table 7); rather than relying on entirely novel tran-
scription factors, it seems instead that an expansion of pre-existing 
transcription factor families had a greater role in seed plant evolu-
tion14. Indeed, ancestral gene number reconstructions of MADS-
intervening keratin-like and C-terminal (MIKC)-type MADS box 
genes (orthogroup 23) show that these important developmental 
regulators more than doubled in number from 15 in the ancestral 
vascular plant to 31 in the ancestral euphyllophyte (here, Salviniales 
plus seed plants; Supplementary Table 5).

In a recent study on the evolution of plant transcription-asso-
ciated proteins, which include transcription factors and tran-
scriptional regulators14, ferns were exclusively represented by the 
Pteridium aquilinum transcriptome. The finding that the transcrip-
tional regulator Polycomb group EZ (PcG_EZ) was lost in ferns 
is corroborated here by our whole-genome data (Supplementary  
Table 8). Conversely, the transcription factor ULTRAPETALA, 
which originated at the base of euphyllophytes and is present 
in P. aquilinum, was apparently secondarily lost in Salviniales 
(Supplementary Table 8). YABBY, an important transcription factor 
that patterns leaf polarity in flowering plants, is absent in our fern 
genomes and in the genome of the lycophyte Selaginella moellendorf-
fii15 (Supplementary Table 8). Interestingly, a YABBY homologue 
was recently identified in a separate lycophyte species—Huperzia 
selago16—suggesting that YABBY has been lost at least twice in land 
plant evolution (in Selaginella and in ferns). How the differential 
retention of YABBY shaped the evolution of the vascular plant body 
plan requires further studies.

Among the orthogroups specific to seed plants, 1-aminocy-
clopropane-1-carboxylic acid (ACC) oxidase is of special interest 
because it converts ACC to ethylene—the last step in the ethylene 
biosynthetic pathway (Fig. 2). Ethylene is a critical plant hormone 
that controls various important physiological responses (for exam-
ple, fruit ripening, flowering time, seed germination and internode 
elongation). Because ethylene responses are known in bryophytes, 
lycophytes and ferns17, it is intriguing to find that ACC oxidase only 
evolved within seed plants, a result confirming that seed-free plants 
must possess an alternative ethylene-forming mechanism18. Two 
other mechanisms, found in bacteria and fungi, result in ethylene 
formation: one via the 2-oxoglutarate-dependent ethylene-forming 
enzyme and the other through the non-enzymatic conversion of 
2-keto-4-methylthiobutyric acid (KMBA) into ethylene17. We did 
not identify ethylene-forming enzyme in seed-free plant genomes, 
suggesting the absence of the ethylene-forming enzyme-based bio-
synthetic pathway. Seed-free plants may possibly synthesize ethylene 

non-enzymatically via KMBA; however, further biochemical stud-
ies are needed to test this hypothesis. Interestingly, ACC synthase 
(upstream of ACC oxidase) is present in seed-free plants, albeit in a 
lower copy number (< 3) compared to seed plants, which average 9.3 
copies (Fig. 2 and Supplementary Fig. 6). Paralogues of ACC syn-
thase in seed plants are differentially regulated in response to vary-
ing developmental or environmental stimuli19. Thus, it is plausible 
that the expansion of the ACC synthase family was coupled with the 
origin of ACC oxidase in seed plants to create a regulated ethylene 
biosynthetic pathway.

The history of whole-genome duplication in ferns. Our Multi-
tAxon Paleopolyploidy Search (MAPS)20 phylogenomic analyses of 
the Azolla and Salvinia genomes (Fig. 3a), together with all available 
transcriptome data from other ferns, support two whole-genome 
duplication (WGD) events: a recent WGD event occurring in Azolla 
following its divergence from Salvinia and an earlier WGD predat-
ing the origin of ‘core leptosporangiates’ (sensu Pryer at al.21), a large 
clade comprising the heterosporous, tree and polypod ferns. The 
observed peaks of duplication associated with the inferred WGDs 
exceeded the 95% confidence intervals of our birth and death simu-
lations for gene family evolution in the absence of WGDs. This high 
number of shared gene duplications is readily explained by a signifi-
cant episodic birth event, such as a WGD. The discovery that Azolla 
experienced a genome duplication independent of other heterospo-
rous ferns is not entirely surprising because Azolla has nearly twice 
the number of chromosomes of other heterosporous ferns, includ-
ing Salvinia and Pilularia22,23 (Fig. 1a).

To further substantiate the two WGD events identified by MAPS, 
we examined the distribution of synonymous distances (Ks) between 
syntenic paralogues within each of the genomes, as well as syntenic 
orthologues between Azolla and Salvinia. In the Azolla genome, we 
detected 242 syntenic blocks comprising 988 syntelog pairs. By con-
trast, only 83 syntenic blocks with 254 syntelog pairs could be found 
in Salvinia. Between Azolla and Salvinia, 3,587 pairs of syntenic 
orthologues were detected, clustering into 356 syntenic genomic 
blocks. We fit Gaussian mixture models to identify peaks in the Ks 
distributions (Fig. 3b and Supplementary Fig. 7). The main peak for 
Azolla–Salvinia orthologue pairs centres at ~1.0, which marks the 
species divergence between the two genera. To the left of this peak 
is the major Azolla intragenomic peak (~0.8), whose position con-
firms the Azolla-specific WGD event (Fig. 3b). To the right of the 
Azolla–Salvinia divergence peak is the Salvinia intragenomic Ks peak 
(~1.2–1.3), which matches a minor Azolla intragenomic peak, con-
sistent with the proposed pre-core leptosporangiates WGD (Fig. 3b).  
Moreover, despite the antiquity of the WGDs and species diver-
gence (Fig. 1a), we were still able to detect Azolla–Salvinia syntenic 
regions in a 2:1 or 2:2 syntenic relationship (Fig. 3c), respectively, 
corroborating the Azolla-specific and the older WGD events. The 
confirmation of these two WGDs in ferns further allows us to char-
acterize patterns of gene retention following WGD. We found that 
Azolla syntenic paralogues are enriched for transcription-related 
genes (Supplementary Table 9), similar to what was observed in 
Arabidopsis and other angiosperms24. Likewise, protein kinases, 
another functional category commonly retained after WGD in seed 
plants, are significantly enriched in Salvinia syntenic paralogues 
(Supplementary Table 9). Additional genomic data are needed to 
better characterize the distribution of WGD events across the fern 
tree of life and to compare patterns of post-WGD gene fractionation 
with those documented in seed plants.

The pentatricopeptide repeat family and RNA editing. The pen-
tatricopeptide repeat (PPR) family is the largest gene family found 
in the Azolla and Salvinia genomes, with the Azolla genome encod-
ing over 2,000 PPR proteins and the Salvinia genome over 1,700 PPR 
proteins. PPRs are implicated in organellar RNA processing25, and 
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the large repertoire of PPRs correlates well with the extensive RNA 
editing we observed in the organellar genomes of Salviniales: 1,710 
sites in Azolla organelles and 1,221 sites in Salvinia (Supplementary 
Table 10). These editing events include both C-to-U conversions 
(~70%) and U-to-C conversions (~30%). The number of PPR genes 
and the degree of RNA editing greatly exceed that found in seed 
plants and most bryophytes26. Of the sequenced plant genomes, 
only that of S. moellendorffii15 has more PPR genes27, correlating 
with the hyperediting seen in lycophytes28. However, there are no 
U-to-C editing events in Selaginella, making the Azolla and Salvinia 
genome sequences a novel and valuable resource for identifying the 
unknown factors catalysing these events.

More than half of the plastid transcripts and two-thirds of the 
mitochondrial transcripts in Azolla and Salvinia require start codon 
creation by C-to-U editing or stop codon removal by U-to-C edit-
ing before translation is possible. Most stop codon edits (76%) and 
start codon edits (62%) are shared between Azolla and Salvinia 
plastomes (as opposed to only 19% in internal ACG codons; 
Supplementary Fig. 10). This persistence of start and stop codon 
edits suggests that their loss is selected against, that is, creating the 
translatable sequence by RNA editing has an advantage over having 
it encoded by the genome. This argues that these particular RNA-
editing events are not selectively neutral29 and supports editing as a 
control mechanism for gene expression in fern organelles.

Only ~55–60% of PPR proteins (1,220 in Azolla and 930 in 
Salvinia) contain domains associated with RNA editing in other 
plants. Although sufficient to account for the number of editing 
events observed (assuming each protein can specify one or a few 
sites as in other plants), this leaves a very large number of PPR pro-
teins (~700 in Azolla and ~600 in Salvinia) with unknown func-
tions. By comparison, flowering plants contain only 200–250 PPR 
proteins that lack editing domains.

Origin and evolution of a fern insecticidal protein. Ferns are 
remarkable for their high levels of insect resistance compared 

to flowering plants30. Recently, Shukla et al.31 isolated a novel 
insecticidal protein, Tma12, from the fern Tectaria macrodonta. 
Transgenic cottons carrying Tma12 exhibit outstanding resistance 
to whitefly, yet show no decrease in yields, demonstrating tremen-
dous agricultural potential. Tma12 has a high similarity to chitin-
binding proteins (Pfam PF03067), but its evolutionary origin is 
unknown. Here, we found a Tma12 homologue to be present in the 
Salvinia genome (henceforth ScTma12), as well as in a few 1,000 
Plants (1KP)32 fern transcriptomes, but not in Azolla or any other 
publicly available plant genomes. Phylogenetic analyses position the 
fern Tma12 sequences together with bacterial sequences, and are 
most closely related to the chitin-binding proteins from Chloroflexi 
(Fig. 4). We investigated whether this insecticidal protein was more 
likely a result of horizontal gene transfer (HGT) from bacteria to 
ferns or produced by fern-associated microorganisms. ScTma12 
is in a 646,687-bp scaffold (Sacu_v1.1_s0099) and has an 247-bp 
intron. The genes upstream and downstream of ScTma12 are all 
clearly plant genes, and we found no abnormality in read-mapping 
quality, nor an abrupt change in read coverage (Supplementary 
Fig. 9), which together speak against the sequence being a con-
tamination from a bacterial source. It has been argued that differ-
ential loss of genes in eukaryotes is the rule and gene acquisition 
by HGT rather rare33. The concerted loss of Tma12 in each of the 
other Viridiplantae lineages is unlikely but cannot entirely be ruled 
out. However, functional HGT into eukaryotes does occur34,35 and 
ScTma12 might represent such a case that contributed to the well-
documented resistance of ferns against phytophagous insects.

Azolla–cyanobacterial symbiosis. To explore the co-evolutionary 
history of the Azolla–Nostoc symbiosis, we resequenced five other 
Azolla species and assembled each of their cyanobiont genomes. 
We then compared the cyanobiont phylogeny to the host species 
phylogeny and found a clear cospeciation pattern, with just one 
exception (the placement of Azolla caroliniana; Fig. 5a). Although 
such a pattern has been hinted at before36,37, we provide unequivocal 
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evidence from whole-genome data. The genetic basis for this per-
sistent symbiosis is undetermined. In plants, two other mutualistic 
associations—the arbuscular mycorrhizal (AM) and the nitrogen-
fixing root nodule (RN) symbioses—have been well characterized. 
Whereas the AM symbiosis is formed between almost all land plants 
and a single fungal clade (Glomeromycota)38, the RN symbiosis is 
restricted to a few angiosperm lineages (mostly legumes) that asso-
ciate with various nitrogen-fixing bacterial symbionts (for example, 
Rhizobium and Frankia). Despite these distinct differences, both 
symbioses require that a common symbiosis pathway (CSP) be 
established38. This pathway is highly conserved in all land plants39, 
except for those that have lost the AM symbiosis40,41, such as A. thali-
ana and three aquatic angiosperms40,41.

We investigated whether the CSP might have been co-opted 
during the evolution of the Azolla–Nostoc symbiosis by searching 
for six essential CSP genes in the Azolla and Salvinia genomes, as 
well as in transcriptomic data from other ferns in the 1KP data 
set32 (Supplementary Table 11). Although DMI2 (also known as 
SYMRK), DMI3 (also known as CCaMK), IPD3 (also known as 
CYCLOPS) and VAPYRIN were found in other ferns, the Azolla and 
Salvinia genomes completely lacked orthologues (Fig. 5b). IPD3 and 
VAPYRIN do not belong to multigene families39 and homologues  

were not detected. Although homologues of DMI2 and DMI3 
were identified, phylogenetic analyses confirmed that they are not 
orthologous to the symbiotic genes (Supplementary Data). In addi-
tion, for DMI3, we searched the Azolla and Salvinia homologues 
for two motifs (threonine 271 and the calmodulin-binding domain) 
that are critical for symbiosis. Both motifs are missing from these 
sequences, confirming the absence of DMI3. CASTOR and POLLUX 
are paralogues resulting from a gene duplication event in the ances-
tor of seed plants, and although pre-duplicated homologues are 
present in Salvinia and other seed-free plants, they are absent in 
Azolla (Fig. 5b). The co-elimination of the CSP genes suggests the 
lack of AM symbiosis in Azolla and Salvinia and that the nitrogen-
fixing Azolla–Nostoc symbiosis does not rely on this pathway.

To identify genes important for the Azolla–Nostoc symbiosis, we 
treated A. filiculoides with erythromycin to remove the cyanobiont 
(AzCy− ) and compared its gene expression patterns with the wild 
type (AzCy+ ). Experiments were carried out in conditions where 
the nitrogen nutrient (ammonium nitrate) was either supplied 
(N+ ) or withheld (N− ) from the growth media. Results from nifH 
real-time PCR confirmed the complete absence of cyanobacteria in 
AzCy−  and showed that the addition of the nitrogen nutrient sup-
presses symbiotic N2 fixation in AzCy+  (Supplementary Fig. 10),  
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b, Density plots from fitting Gaussian mixture models to Ks distributions estimated from pairs of syntenic paralogues within the Azolla and Salvinia 
genomes, as well as of syntenic orthologues between Azolla and Salvinia. c, Examples of synteny between Azolla and Salvinia genomic regions. The left 
and right panels display a 2:1 and 2:2 syntenic relationship between Azolla and Salvinia regions, respectively. Each subpanel represents a genomic region 
in Azolla or Salvinia, with gene models on both strands shown above and below the dashed line. High-scoring sequence pairs (HSPs) in protein-coding 
sequences are marked by short vertical bars above the gene models. Selected HSP links between genomic regions are depicted as coloured lines crossing 
the subpanels, whereas others (for example, the HSP links between the two Azolla genomic regions in the left panel) are left out for clarity. Collinear series 
of HSPs across genomic regions indicates a syntenic relationship between the regions concerned. Genomic regions conserved in duplicate after the WGD 
that occurred prior to the divergence between Azolla and Salvinia should show a 2:2 syntenic relationship, whereas regions conserved in duplicate after the 
Azolla-specific WGD should show a 2:1 syntenic relationship with Salvinia regions. The left and right panels can be regenerated at https://genomevolution.
org/r/ujll and https://genomevolution.org/r/ukys, respectively. 
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consistent with an earlier study42. A large portion of the tran-
scriptome is affected by the presence or absence of cyanobionts, 
with 6,210 and 2,125 genes being differentially transcribed under 
N−  and N+  conditions, respectively (Fig. 5c and Supplementary 
Discussion). Of these, over 33% have at least a twofold expression 
difference. In response to nitrogen starvation, the Azolla tran-
scriptomes remained moderately stable when the cyanobiont was 
present, but shifted drastically once it was absent (Fig. 5d). This  
finding suggests that the presence of the cyanobiont buffers the 
transcriptomic profile of Azolla from fluctuations in environmental 
nitrogen availability.

We focused primarily on those genes that are differentially 
expressed between the nitrogen treatments when the cyanobiont 
is present, and to a lesser extent on when the cyanobiont is absent 
(Fig. 5e and Supplementary Discussion). Because the cyanobacte-
rial N2-fixation rate is strongly induced in the N−  condition, we 
expect these genes to be candidates involved in nutrient exchange 
or in communication with the cyanobiont to promote N2 fixa-
tion. A total of 88 upregulated and 72 downregulated genes were 
identified (Fig. 5e). Among the upregulated genes is a paralogue of 
the ammonium transporter 2 subfamily (AfAMT2-4; Azfi_s0034.
g025227; Fig. 5e and Supplementary Fig. 11) that is probably dedi-
cated to ammonium uptake from the Azolla leaf cavity where the 
cyanobiont resides; homologous ammonium transporters have 
been implicated to participate in the AM and RN symbioses43,44. 
There is also a paralogue of the molybdate transporter gene family  

(AfMOT1; Azfi_s0167.g054529) that is most likely specialized for 
supplying molybdenum, a required co-factor for nitrogenase, to 
the cyanobiont. One of the legume MOT1 genes was recently found 
to facilitate nitrogenase activity in RN symbiosis45. In addition to 
these two transporters, we identified a chalcone synthase paralogue 
in this candidate gene set. Chalcone synthase catalyses the produc-
tion of naringenin chalcone and is the first committed step in fla-
vonoid biosynthesis. Interestingly, naringenin and naringin both 
have significant effects on promoting cyanobacterial growth46 and 
differentiation47. Naringin is also a hormogonium-repressing fac-
tor47. Because hormogonia lack heterocysts and cannot fix nitrogen, 
naringin (or related flavonoids) could act as a plant signal to boost 
N2 fixation in the cyanobiont (Supplementary Discussion).

Although the ancient and intimate nature of the Azolla–Nostoc 
relationship suggests that gene transfer from Nostoc to the Azolla 
nuclear genome may have occurred over time, a thorough homol-
ogy search found no evidence of Nostoc-to-Azolla HGT. However, 
we did discover a cyanobacteria-derived gene in the Azolla genome, 
but one that is shared with other ferns. This gene encodes a squa-
lene–hopene cyclase (SHC), which mediates the cyclization of 
squalene into hopene, and is thought to be the evolutionary progen-
itor of many classes of eukaryotic and prokaryotic sterol cyclases. 
We found SHC homologues in both the Azolla and the Salvinia 
genomes, as well as in 40 fern 1KP transcriptomes. Our recon-
structed gene phylogeny clearly shows that the fern SHCs are nested 
among cyanobacteria sequences (Supplementary Fig. 12). Although 
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no homologue can be found in seed plants or in green algae, the 
SHC is also present in bryophyte (moss and liverwort) genomes and 
transcriptomes. Interestingly, these bryophyte SHCs are not related 
to those of ferns but are embedded in other bacterial SHC lineages 
(the monophyly of land plant SHCs is rejected by the Swofford–
Olsen–Waddell–Hillis test48, P <  0.005). This finding implies a com-
plex evolutionary history for SHCs in land plants, possibly featuring 
independent transfers of SHC from different prokaryotic lineages to 
mosses, liverworts and ferns. We are confident that these SHC genes 
are not from contaminants because the gene phylogeny largely mir-
rors the species phylogeny; furthermore, the SHC genes were not 
assembled into stray scaffolds in the genomes of Azolla, Salvinia, 
Physcomitrella49 or Marchantia50. In addition, we detected the trit-
erpene products of SHC, hop-22(29)-ene, diplopterol and tetrahy-
manol, in S. cucullata biomass, providing direct evidence for SHC 
activity in this fern (Supplementary Fig. 13). Similar observations of 
SHC-synthesized triterpenes have been made in polypod ferns51,52 
and mosses53. Because hopenes have an important role in plasma 
membrane stability in prokaryotes (similar to steroids in eukary-
otes) and have been shown to confer low-temperature adaptation 
and stress tolerance54, it is plausible that the convergent evolution of 

hopene biosynthesis in seed-free plants, through independent HGTs 
from bacteria, might have contributed to the early adaptations of 
land plants to diverse and adverse environments. Functional studies 
are needed to confirm this hypothesis.

We anticipate that the availability of the first genomic data from 
ferns will continue to lead to vital insights into the processes that 
govern the evolution of plant genes and gene families. The imple-
mentation of fern data into the existing comparative genomic 
framework will enhance our understanding the plant tree of life.

Methods
Flow cytometry and genome size estimation. To estimate the genome sizes 
of S. cucullata, P. americana, Regnellidium diphyllum and Marsilea minuta 
(Supplementary Table 1), we used the Beckman chopping buffer to extract 
nuclei from fresh leaves, following the protocol of Kuo and Huang55. The nuclei 
extractions were mixed with those from standards, stained with 1/50 volume of 
propidium iodide solution (2.04 mg ml−1) and incubated at 4 °C in darkness for 
1 h. For each species, three replicates were performed on the BD FACSCan system. 
For S. cucullata, we used A. thaliana (0.165 pg per C)56 as the standard, and for all 
other samples, we used Zea mays ‘CE-777’ (2.785 pg per C)56. For each peak (in 
both standard and sample), over 1,000 nuclei were collected with cross-validation 
values lower than 5%, except for those of A. thaliana 2n nuclei peaks, which ranged 
from 5.5% to 5.9%. To calculate the 2C-value of S. cucullata, we used a formula of: 
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(0.66 pg ×  (F −  S2n) +  0.33 pg ×  (S4n −  F))/(S4n −  S2n). For all other samples, we 
used: 5.57 pg ×  F/S2n, where 0.66, 0.33 and 5.57 pg are the 4C-value of A. thaliana, 
the 2C-value of A. thaliana and the 2C-value of Z. mays ‘CE-777’, respectively. S2n, 
S4n and F are the relative fluorescence amount (that is, the peak mean value) of the 
standard 2n nuclei, standard 4n nuclei and the sample 2n nuclei, respectively.

Genome and transcriptome sequencing. A. filiculoides was collected from 
the Galgenwaard ditch in Utrecht, the Netherlands, and propagated directly or 
sterilized as described in Dijkhuizen et al.57. A. filiculoides (sterilized without 
cyanobiont) DNA was extracted, then sequenced on PacBio RSII at 51×  coverage57 
and Illumina HiSeq2000 (100 bp paired-end; ~86×  coverage; Supplementary  
Table 12) with library insert sizes of 175 bp and 340 bp. RNA sequencing (RNA-seq) 
data from A. filiculoides of the Galgenwaard ditch used for annotation included 
the following RNA profiles: (1) at four time points during the diel cycle of fern 
sporophytes grown with or without 2 mM ammonium nitrate for 1 week42; (2) of 
different reproductive stages comparing fern sporophytes, microsporocarps and 
megasporocarps collected at noon58; (3) of roots treated with cytokinin, indole-3-
acetic acid (IAA) or none59; and (4) of sporophytes with or without cyanobacterial 
symbionts grown with or without ammonium nitrate for 2 weeks then collected 
at noon. Plant materials of A. caroliniana, Azolla mexicana, Azolla microphylla, 
Azolla nilotica and Azolla rubra were obtained from the International Rice 
Research Institute (Supplementary Table 1) and DNA was extracted by a modified 
cetyltrimethylammonium bromide (CTAB) procedure60. Illumina libraries with a 
500-bp insert size were prepared and sequenced on Illumina HiSeq2000 (100 bp 
paired-end; ~50×  coverage; Supplementary Table 12).

S. cucullata was originally collected from Bangladesh and subsequently cultured 
at Taiwan Forestry Research Institute, Dr. Cecilia Koo Botanic Conservation 
Center and Duke University (Supplementary Table 1). Genomic DNA was purified 
using a modified CTAB procedure60 and sequenced on both PacBio RSII (10 SMRT 
cells; 46×  coverage) and Illumina HiSeq2000 platforms (1 lane of 125 bp paired-
end; 215×  coverage; Supplementary Table 12). S. cucullata RNA from the floating 
and submerged leaves was separately extracted using the Sigma Spectrum Plant 
Total RNA kit, each with three biological replicates. To examine patterns of RNA 
editing, one library per leaf type was prepared by the Illumina Ribozero Plant 
kit (that is, not poly-A enriched), whereas the other two were done by the Kapa 
Stranded mRNA-seq kit. These six RNA libraries were pooled and sequenced in 
one lane of Illumina HiSeq2000 (125 bp paired-end).

Genome assembly. We assembled the PacBio reads from A. filiculoides and 
S. cucullata genomes using PBcR61, and the resulting drafts were then polished by 
Quiver62 (A. filiculoides) or Pilon63 (S. cucullata). Plastid genomes were separately 
assembled using Mitobim64 and annotated in Geneious65 with manual adjustments. 
The PBcR contigs were filtered to remove plastome fragments. Although the 
A. filiculoides strain we sequenced was surface sterilized and treated with antibiotics 
to remove its associated microbiome, other endophytes could still persist, as 
shown by Dijkhuizen et al.57. Thus, we thoroughly assessed the A. filiculoides 
and S. cucullata assemblies to filter out all possible non-plant scaffolds. We used 
BlobTools66 in combination with SILVA67 and UniProt68 databases to infer the 
taxonomy for each scaffold. We removed all scaffolds that were classified as 
bacteria or fungi and also those that had a skewed GC content and read coverage. 
The completeness of each final assembly was assessed by BUSCO69 with the Plants 
set, and by using BWA70 and HISAT271 to map Illumina reads to the assemblies 
(Supplementary Table 2).

Repeat annotation. RepeatModeler72 was used to generate species-specific repeat 
libraries for masking and annotation. Consensus repeat sequences with homology 
to known plant genes were removed from the repeat libraries. Homology was 
defined as having a significant (E-value <  1 ×  10−5) blastx73 hit to a subset of the 
PlantTribes74 v1.1 database that does not contain transposable element-related 
terms. Filtered RepeatModeler libraries were annotated with the name of the 
highest-scoring significant Repbase75 v22.04 full database sequence (tblastx73, 
E-value <  1 ×  10−5) and the highest-scoring significant Dfam76 v2.0 profile hidden 
Markov model (HMM) (hmmsearch77, E-value <  1 ×  10−5).

LTR-RTs were discovered using structural criteria by the GenomeTools78 
program LTRHarvest79 with the following modifications to the default settings: a 
LTR similarity threshold of 0.01, an allowed LTR length range of 100–6,000 bp, an 
allowed distance between LTRs of a single element range of 1,000–25,000 bp and 
the number of bases outside LTR boundaries to search for target-site duplications 
set to 10. The GenomeTools program LTRDigest80 was used with a set of 138 
transposable element-related Pfam profile HMMs to annotate protein-coding 
domains in the internal regions of LTR-RTs.

We used 38 previously published A. filiculoides RNA-seq libraries and 6 S. 
cucullata libraries (see above) to assemble transcriptomes for facilitating gene 
model predictions. Reads from A. filiculoides and S. cucullata libraries were 
processed using a combination of Scythe81 and Sickle82 or SOAPnuke83, with 
adapter and contaminating sequences discovered using FastQC84 (v0.11.5). 
Approximately 627 million (A. filiculoides) and 259 million (S. cucullata) cleaned 
paired reads went into the assemblies. Libraries from experimental replicates were 
combined and assembled de novo by Trinity85 (v2.0.6) and in a reference-guided 

manner using HISAT271 (v2.0.4) and StringTie86 (v1.2.2), except for nine libraries 
published in de Vries et al.59 for which only a reference-guided approach was used. 
All programs used default parameters, and Trinity was run with the additional 
--trimmomatic option. StringTie results were merged using StringTie --merge, 
combined with the Trinity output, and were purged of redundant sequences using 
the GenomeTools sequniq utility78.

Putative centromere sequences were first identified by searching the genome 
assemblies with Tandem Repeat Finder87 to identify very high-copy (> 100 
repeats) tandem repeats with a motif length in the range of 185–195 bp. Motif 
sequences were extracted from the Tandem Repeat Finder output and clustered 
using USEARCH88. A single major cluster was identified for each species and the 
sequences were separately aligned using MAFFT89. Multiple sequence alignments 
for each species were used to generate a profile HMM representing the putative 
centromere sequences. We next used hmmsearch77 to search the genome 
assemblies again to identify all regions with similarity to the centromere profile 
HMMs. Genomic regions with significant HMM matches were identified and these 
regions were annotated in a GFF3 format.

Gene prediction. Protein-coding genes were predicted using MAKER-P90 
(v2.31.8), and three MAKER-P iterations were performed: (1) repeat masking and 
creation of initial gene models from transcript and homologous protein evidence; 
(2) refinement of initial models with SNAP91 ab initio gene predictor trained on 
initial models; and (3) final models generated using SNAP and the ab initio gene 
predictor AUGUSTUS92 trained on gene models from the second iteration.

Masking was performed by RepeatMasker93 (v4.0.5) using the previously 
described species-specific repeat libraries and the full Repbase v22.04 database. 
After masking, gene models were inferred from transcripts and homologous 
protein sequences by first aligning to the genomes using BLAST+ 73 (v2.2.31) blastn 
or blastp, and then refined using the functions est2genome and protein2genome 
from the splice-site aware alignment program Exonerate94 (v2.2.0). We included 
the previously described A. filiculoides or S. cucullata transcriptomes and the set 
of protein sequences consisting of the full Swiss-prot database (downloaded 18 
June 2016), Amborella trichopoda v1.0 proteins, A. thaliana TAIR10 proteins, 
Chlamydomonas reinhardtii v5.5 proteins, Oryza sativa v7.0 proteins and 
Physcomitrella patens v3.3 proteins (from Phytozome95). Gene models with an 
annotation edit distance (AED) score of < 0.2 were used to train SNAP, which 
was used during the second iteration of MAKER-P. SNAP was retrained for 
the final iteration using gene models from the second iteration with an AED 
score of < 0.2 and a translated protein length of > 200 amino acids. Prior to 
training AUGUSTUS92, redundant sequences, defined as those sharing ≥ 70% 
sequence similarity in significant (E-value <  1 ×  10−5) HSPs from an all-by-all 
blastn alignment, were removed from the training set. Final non-redundant sets 
of 5,013 (A. filiculoides) or 6,475 (S. cucullata) gene models were used to train 
AUGUSTUS92.

Phylogenomic inference and placement of WGDs from nuclear gene trees. 
To infer ancient WGDs, we used a gene-tree sorting and counting algorithm, 
implemented in the MAPS tool20. We selected four species of heterosporous 
ferns (two Azolla, one Salvinia and one Pilularia) and representatives of three 
other leptosporangiate lineages (Blechnum, Lygodium and Dipteris). The MAPS 
algorithm uses a given species tree to filter collections of nuclear gene trees for 
subtrees consistent with relationships at each node in the species tree. Using this 
filtered set of subtrees, MAPS identifies and records nodes with a gene duplication 
shared by descendant taxa. To infer and locate a potential WGD, we plotted the 
percentage of gene duplications shared by descendant taxa by node: a WGD 
will produce a large burst of shared duplications, appearing as an increase in the 
percentage of shared gene duplications20.

We circumscribed and constructed nuclear gene family phylogenies from 
multiple species for each MAPS analysis. We translated each transcriptome into 
amino acid sequences using the TransPipe pipeline96. Using these translations, 
we performed reciprocal protein BLAST (blastp) searches among data sets for 
each MAPS analysis using an E-value cut-off of 10−5. We clustered gene families 
from these BLAST results using OrthoFinder with the default parameters97 and 
only kept gene families that contained at least one gene copy from each taxon in 
a given MAPS analysis. We discarded the remaining OrthoFinder clusters. We 
used PASTA98 for automatic alignment and phylogenetic reconstruction of gene 
families, employing MAFFT89 for constructing alignments, MUSCLE99 for merging 
alignments and RAxML100 for tree estimation. The parameters for each software 
package were the default options for PASTA. For each gene family phylogeny, 
we ran PASTA until we reached three iterations without an improvement in the 
likelihood score using a centroid breaking strategy. We used the best-scoring 
PASTA tree for each multi-species nuclear gene family to infer and locate WGDs 
using MAPS.

For the null simulations, we first estimated the mean background gene 
duplication rate (λ) and the gene loss rate (μ) with WGDgc101. Gene count data 
were obtained from OrthoFinder clusters associated with each species tree. 
λ =  0.0031 and μ =  0.0039 were estimated using only gene clusters that spanned the 
root of their respective species trees, which has been shown to reduce biases in the 
maximum likelihood estimates of λ and μ101. We chose a maximum gene family 
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size of 100 for parameter estimation, which was necessary to provide an upper 
bound for numerical integration of node states101. We provided a prior probability 
distribution of 1.5 on the number of genes at the root of each species tree, such that 
ancestral gene family sizes followed a shifted geometric distribution with a mean 
equal to the average number of genes per gene family across species.

Gene trees were then simulated within each MAPS species tree using the 
GuestTreeGen program from GenPhyloData102. We developed ultrametric species 
trees from the topological relationships inferred by the 1KP Consortium analyses 
and median branch lengths from TimeTree103. For each species tree, we simulated 
4,000 gene trees with at least one tip per species: 1,000 gene trees at the λ and μ 
maximum likelihood estimates, 1,000 gene trees at half the estimated λ and μ, 1,000 
trees at three times λ and μ, and 1,000 trees at five times λ and μ.

Classification of syntenic duplicates and microsynteny analysis. To distinguish 
gene duplicates as syntenic or tandem, we used the SynMap104 tool from the 
CoGe105 platform, with default parameters and the Quota Align algorithm to 
merge syntenic blocks. Sets of syntenic paralogues or orthologues (defined 
by a collinear series of putative homologous genes) were extracted using the 
DAGChainer algorithm, whereas duplicates within ten genes apart in the same 
genomic region were identified as tandem duplicates (Supplementary Discussion). 
Results for within Azolla and Salvinia genome comparisons, as well as between 
Azolla and Salvinia, can be regenerated using the links https://genomevolution.
org/r/tozk, https://genomevolution.org/r/toz7 and https://genomevolution.org/r/
toyy, respectively. Microsynteny analyses were performed using the GEvo tool from 
CoGe105. We used the default setting to define the minimum number of collinear 
genes for two regions to be called syntenic. Non-coding regions were masked in 
the two genomes to include only the protein-coding sequences. The two example 
microsyntenies shown in Fig. 5c can be regenerated at https://genomevolution.
org/r/ujll and https://genomevolution.org/r/ukys.

Gaussian mixture model analysis of Ks distributions. Estimates of Ks were 
obtained for all pairs of syntenic paralogous and orthologous genes using the 
CODEML program106 in the PAML package (v4.8)107 on the basis of codon 
sequence alignments. We used the GY model with stationary codon frequencies 
empirically estimated by the F3 ×  4 model. Codon sequences were aligned with 
PRANK (version 100701) using the empirical codon model108 (setting -codon) 
to align coding DNA, always skipping insertions (-F). Only gene pairs with Ks 
values in the range of 0.05–5 were considered for further analyses. Gaussian 
mixture models were fitted to the resulting frequency distributions of Ks values 
by means of the densityMclust function in the R mclust version 5.3 package109. 
The Bayesian information criterion was used to determine the best-fitting 
model for the data, including the optimal number of Gaussian components to 
a maximum of nine. For each component, several parameters were computed 
including the mean and the variance, as well as the density mixing probabilities 
and the total number of gene pairs.

Gene family classification and ancestral reconstruction. The OrthoFinder97 
clustering method was used to classify complete proteomes of 23 sequenced green 
plant genomes, including A. filiculoides and S. cucullata (Supplementary Table 5),  
into orthologous gene lineages (that is, orthogroups). We selected taxa that 
represented all of the major land plant and green algal lineages, including six core 
eudicots (A. thaliana, Lotus japonicus, Populus trichocarpa, Solanum lycopersicum, 
Erythranthe guttata and Vitis vinifera), five monocots (O. sativa, Sorghum bicolor, 
Musa acuminata, Zostera marina and Spirodella polyrhiza), one basal angiosperm 
(A. trichopoda), two gymnosperms (Pinus taeda and Picea abies), two ferns 
(A. filiculoides and S. cucullata), one lycophyte (S. moellendorffii), four bryophytes 
(Sphagnum fallax, P. patens, Marchantia polymorpha and Jungermannia infusca) 
and two green algae (Klebsormidium flaccidum and C. reinhardtii). In total, 16,817 
orthogroups containing at least two genes were circumscribed, 8,680 of which 
contain at least one gene from either A. filiculoides or S. cucullata. Of the 20,203 
annotated A. filiculoides genes and the 19,780 annotated S. cucullata genes, 17,941 
(89%) and 16,807 (84%) were classified into orthogroups, respectively. The details 
for each orthogroup, including gene counts, secondary clustering of orthogroups 
(that is, super-orthogroups)110 and functional annotations, are reported in 
Supplementary Table 5.

We used Wagner parsimony implemented in the program Count111 with 
a weighted gene gain penalty of 1.2 to reconstruct the ancestral gene content 
at key nodes in the phylogeny of the 23 land plants and green algae species 
(Supplementary Table 5). The ancestral gene content dynamics—gains, losses, 
expansions and contractions—are depicted in Supplementary Fig. 5. Complete 
details of orthogroup dynamics for the key ancestral nodes that include seed 
plants, such as Salviniaceae, euphyllophytes and vascular plants, are reported in 
Supplementary Table 5.

Transcription-associated protein characterization. Transcription-associated 
proteins comprise transcription factors that bind in a sequence-specific manner 
to cis-regulatory DNA elements and transcriptional regulators that act via 
protein–protein interaction or chromatin modification. We conducted genome-
wide, domain-based annotation of transcription-associated proteins according to 

previous studies14,112. A total of 1,206 (6%, Azolla) and 983 (7%, Salvinia) proteins 
were sorted into families; this amount is similar to Selaginella but less than in 
gymnosperms or angiosperms (Supplementary Table 8).

PPR annotation. We conducted a targeted annotation for PPR genes because they 
are generally only weakly expressed and thus often lack transcriptome support. 
Open reading frames from the nuclear genome assemblies were translated into 
amino acid sequences using the “getorf ” tool from the EMBOSS (v.6.5.7) package113 
with a minimum size restriction of 300 nucleotides. These open reading frames were 
searched for PPR motifs using the hmmsearch tool from the HMMER3 package77. 
The PPR motif models and parameters used follow those of Cheng et al.27.  
Motifs were assembled into full PPR tracts and the best model for each PPR  
was determined27.

To study the prevalence and location of RNA editing, non-poly(A)-enriched 
RNA-seq data were filtered to remove adapters, low-quality reads and reads 
with ≥ 5% Ns. Clean reads were aligned against the assembled plastid and 
mitochondrial genome assemblies using TopHat 2.0 (ref.114). One of the inverted 
repeat regions in the plastid genomes was removed before mapping. Only 
uniquely mapped reads were retained as input for SAMtools115 to call mismatches 
between RNA and the corresponding DNA. Differences between corresponding 
RNA and DNA sequences were identified as the putative RNA-editing sites. The 
RNA-editing level was defined as the number of altered reads divided by the total 
mapped reads for each site.

Phylogeny of the insecticidal protein Tma12. We used BLASTp73 to search 
for Tma12 (Genbank accession: JQ438776) homologues in Phytozome95, 1KP 
transcriptomes32 and the NCBI Genbank non-redundant protein database. 
Although Tma12 homologues are present in fern transcriptomes and in the 
S. cucullata genome, no significant hit was found in any other plant genomes or 
transcriptomes. In addition, the majority of the Tma12 protein is composed of a 
chitin-binding domain that belongs to the PF03067 Pfam family. This family does 
not contain any plant genes but is predominantly represented in the genomes of 
Actinobacteria, insects and fungi. To trace the origin of fern Tma12 genes, we 
downloaded representative sequences containing PF03067 and PF08329 (as the 
outgroup) from UniProt and Genbank and reconstructed the phylogeny using 
IQ-TREE116. We then used this preliminary phylogeny (Supplementary Data) to 
construct a more focused data set to narrow down the phylogenetic affinity of 
Tma12. PartitionFinder117 was used to infer the optimal codon partition scheme 
and substitution models, and RAxML100 was used for maximum likelihood 
phylogeny inference and to calculate bootstrap branch support.

Azolla phylogeny. From the resequencing data (Supplementary Table 12), we 
compiled both plastome and nuclear phylogenomic data sets to infer the Azolla 
species phylogeny. S. cucullata was used as the outgroup. For the plastome 
phylogeny, we concatenated nucleotide alignments from 83 protein-coding genes 
and used PartitionFinder117 to identify the optimal data partition scheme and 
the associated nucleotide substitution models. RAxML100 was used for maximum 
likelihood phylogeny inference and to calculate bootstrap branch support. For the 
nuclear data set, we focused on genes that, based on the gene family classification 
results, are single copy in both A. filiculoides and S. cucullata genomes. We used 
HybPiper118 to extract the exon sequences from each of the resequenced species. 
The ‘bwa’ option was used in HybPiper instead of the ‘blastx’ default. We then 
filtered out genes with more than two species missing or having an average 
sequence length shorter than 75% of the one in A. filiculoides. This resulted in a 
final data set of 2,108 genes. Sequence alignments and gene tree inferences were 
done in PASTA98, with the default setting, except that RAxML100 was used to 
estimate the best tree on the final alignment. To infer the species tree from these 
gene trees, we used the multi-species coalescent method implemented in ASTRAL-
III (v5.6.1)119. The tree topology from the plastome and nuclear data sets were 
identical, and all nodes received bootstrap support of 100 and a local posterior 
probability of 1.0.

Cyanobiont phylogeny. To compare the host and symbiont phylogenies, 
we assembled the cyanobiont genomes from five additional Azolla species 
(Supplementary Table 12) using the resequencing data generated from total DNAs, 
including sequences derived from both the host and the cyanobiont. To extract 
the cyanobiont genomes from each of the Azolla species, we first filtered out 
chloroplast sequences by using BWA70 (default parameters) to map the total clean 
DNA reads against each chloroplast genome reference. In this step, ~3–4% of the 
reads were filtered out, which is necessary to remove plastid ribosomal RNAs that 
are highly similar to ones in the cyanobionts. For each of the five Azolla species, we 
then mapped the filtered reads to the published cyanobiont reference (N. azollae 
0708 isolated from A. filiculoides11; Genbank accession: NC_014248) using 
BLAST73 (alignment criteria: E-value ≤  1 ×  10−5, sequence identity of ≥ 90% and an 
aligned coverage of ≥ 90%). Only the aligned reads were assembled by Mitobim64 
(iterations =  5) using N. azollae 0708 (ref.11) as a reference. Gene prediction for each 
assembled cyanobiont was performed by the Prodigal program120. Transfer RNAs 
were predicted by tRNAscan-SE121 using a bacterial tRNA gene structure model. 
The presence of rRNA sequences (gene number and structure) for each cyanobiont 

NATuRE PLANTS | www.nature.com/natureplants

https://genomevolution.org/r/tozk
https://genomevolution.org/r/tozk
https://genomevolution.org/r/toz7
https://genomevolution.org/r/toyy
https://genomevolution.org/r/toyy
https://genomevolution.org/r/ujll
https://genomevolution.org/r/ujll
https://genomevolution.org/r/ukys
http://www.nature.com/natureplants


Articles NaTure PlaNTS

was confirmed by mapping the rRNAs of N. azollae 0708 against each assembled 
genome cyanobiont sequence using BLAST. We used mugsy122 to generate the 
whole-genome alignment, which resulted in a nucleotide matrix of 5,354,840 
characters. IQ-TREE116 was used for model testing and maximum likelihood tree 
inference. Because the N. azollae genome is reduced in size and is significantly 
diverged from other cyanobacteria, we could not find an appropriate outgroup to 
root the cyanobiont tree. To overcome this, we used STRIDE123 implemented in 
OrthoFinder97 to locate the root by reconciling gene trees. STRIDE was run with 
the default setting, except that MAFFT89 was used for alignment and RAxML100 for 
tree inference. The root was found to be the node placing the A. nilotica cyanobiont 
as sister to a clade comprising all other cyanobionts. The reconciled species tree is 
identical to the tree reconstructed from the whole-genome alignment.

Identification of the CSP genes. The Medicago truncatula DMI2, DMI3, IPD3, 
CASTER/POLLUX and VAPYRIN sequences were used as queries, as in a previous 
study39, to search against the genomes and transcriptomes from species listed in 
Supplementary Table 11 using tBLASTn73. For liverworts and ferns from the 1KP 
data set32, non-annotated transcriptomes were used as targets, with the longest 
open reading frame of each contig extracted and translated. For A. filiculoides and 
S. cucullata, both the annotated gene models and the unannotated scaffolds were 
used. All hits that matched already annotated gene models were discarded prior 
to subsequent analyses. No homologues were identified in the two fern genomes 
for IPD3 and VAPYRIN. Protein sequences for DMI2/SYMRK, DMI3/CCaMK and 
CASTOR/POLLUX were aligned using MAFFT89. The best substitution model for 
each alignment (JTT for all alignments) was determined using MEGA6 (ref.124). 
Phylogenetic trees were generated using RAxML100 on the CIPRES platform125, and 
node support was assessed with 100 rapid bootstrap pseudoreplicates.

Quantitative real-time PCR of nifH. Quantitative real-time PCR for the N. azollae 
nifH gene was conducted using total RNA extracted from A. filiculoides. Primers 
were derived from Brouwer et al.58. ThermoFisher Superscript IV was used to 
generate complementary DNA from the RNA. The cDNA was then used for 
quantitative PCR with the Roche SYBR Green Master Mix on a Chromo4 real-
time PCR machine with the Opticon platform. The relative gene expression was 
calculated using the 2ΔC(t) method, with the cyanobacteria present/nitrogen absent 
condition as the reference.

Azolla symbiosis transcriptome analysis. We used RNA-seq to compare gene 
expression patterns of AzCy+  and AzCy−  individuals grown with or without 
ammonium nitrate. Each condition and treatment combination has three biological 
replicates. RNA-seq reads were mapped to the A. filiculoides genome by HISAT271, 
and read counts for each gene were calculated using the HTSeq software package126. 
We used the rlog function in the DESeq2 package127 for data normalization and 
carried out differential expression analysis in DESeq2 to identify upregulated and 
downregulated genes with an adjusted P value of 0.005. Distance clustering and 
principal component analysis were used to examine the relatedness of samples and 
conditions as a quality-control measure.

Azolla–cyanobacteria HGT. To identify cyanobiont-derived genes in the 
A. filiculoides genome, we first investigated a potential orthologous relationship 
between any Azolla genes and cyanobacteria. For this, we used the Azolla genome 
assembly as a query for a DIAMOND BLASTx128 against a protein data set of 11 
cyanobacterial genomes. This resulted in 30,312 Azolla genome contigs hitting 
8,779 different cyanobacterial proteins that were used as a query in a tBLASTn73 
against the Azolla genome; 340 Azolla contigs had reciprocal hits. To investigate 
whether these represent possible Nostoc-to-Azolla transfers or just examples of 
plastid-to-nucleus transfers, we used the 340 Azolla contigs for another BLASTx 
against the cyanobacteria and extracted all 51,743 BLASTx-aligned Azolla 
sequences. These highly redundant protein sequences were used for a DIAMOND 
BLASTp against the non-redundant database of NCBI. Almost all of the sequences 
had streptophyte proteins as the top hit, and when not, phylogenetic analysis 
clearly placed them within streptophytes.

Phylogeny of SHC. Homologues of SHC and oxidosqualene cyclase were obtained 
by searching against Phytozome95, 1KP transcriptomes32 and the NCBI Genbank 
non-redundant protein database. Protein alignment was done in MUSCLE99. We 
used IQ-TREE116 to find the best-fitting amino acid substitution model and infer 
the phylogeny using maximum likelihood. Bootstrap support was assessed with 
1,000 pseudoreplicates. To test whether the monophyly of fern, lycophyte, moss 
and liverwort SHC could be rejected, we conducted a Swofford–Olsen–Waddell–
Hillis test using SOWHAT48. We compared the best maximum likelihood topology 
against the topology with all land plant SHC constrained to be monophyletic. 
SOWHAT was run with 1,000 replicates.

Detection of SHC-synthesized triterpenes. Freeze-dried S. cucullata biomass 
was Soxhlet extracted in a 9:1 DCM:MeOH mixture for 24 h. The total lipid 
extracts obtained were dried over Na2SO4 followed by evaporation of the solvent 
by a gentle stream of N2. Aliquots of the total lipid extracts were methylated 
with diazomethane to convert the acid groups into corresponding methyl esters, 

purified over a SiO2 column and silylated using bis(trimethylsilyl)trifluoracetamide 
(BSTFA) in pyridine at 60 °C for 20 min to convert the hydroxy groups into the 
corresponding trimethylsilyl ethers. The total lipid extracts were on-column 
injected on a Thermo Trace GC Ultra Trace DSQ gas chromatography mass 
spectrometry (GC–MS) onto a CP-sil 5CB-fused silica column (30 m ×  0.32 mm 
internal diameter, film thickness: 0.10 μ m). The GC–MS was operated at a constant 
flow of 1.0 ml min−1. The GC oven was programmed starting at 70 °C to rise to 
130 °C at a rate of 20 °C per min and then to 320 °C at a rate of 4 °C per min, 
followed by an isothermal hold for 20 min.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. The genome assemblies and annotations can be found at 
www.fernbase.org. The raw genomic and transcriptomic reads generated in this 
study were deposited in the NCBI SRA under the BioProject PRJNA430527 
and PRJNA430459. The sequence alignments and tree files can be found in the 
Supplementary Data.
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Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation We used flow cytometry to estimate the genome sizes of Pilularia americana, Regnellidium diphyllum, Marsilea minuta, Salvinia 
cucullata.  
 
1. Prepare buffer for use. 
   a. Allocate appropriate amount of Backmen stock buffer to a 50-ml tube based on an estimation of 1-1.5 ml per sample.  
   b. Add 0.04 g PVP-40, 5 μl 2-mercaptoethanol, 1 μl RNase per ml of buffer.  
2. Extract sample and standard nuclei by chopping leaf tissue   
   a. Add 500 μl of buffer to a glass Petri dish.  
   b. Add a (~400 mm2) piece of young leaf to the Petri dish, and chop it with a razor on ice until most tissue slices are less than 1  
mm in size.  
   c. Filter the chopped sample and standard into a 2.0-ml tube through a 30-μm nylon mesh.  
   d. Add additional buffer to the sample, and ensure that the filtered leaf nuclei solution is greater than 500 μl in volume or more 
depending on need.  
3. Staining nuclei solutions  
   a. Mix sample nuclei and standard leaf nuclei solutions into a 500-μl volume in 2.0-ml tubes.  
   b. Add 10 μl PI solution (2.04 mg/ml ) into each of mixed nuclei solutions.  
   c. Incubate in the dark at 4 °C for 1 h for staining.  
 
Recipes  
Backmen stock buffer 
1.0% Triton X-100  
50 mM Na2SO3  
50 mM Tris-HCl (pH 7.5)  
ddH2O (the solvent)  
Note: Store at 4 °C up to 1 year. 

Instrument BD FACSCan system (BD Biosciences, Franklin Lake, NJ, USA)

Software BD FACSCan system (BD Biosciences, Franklin Lake, NJ, USA)

Cell population abundance Pilularia americana: 
 Replicate 1: sample peak particle number = 1514, standard1 peak particle number = 1154. 
 Replicate 2: sample peak particle number = 1834, standard1 peak particle number = 1371. 
 Replicate 3: sample peak particle number = 1450, standard1 peak particle number = 1036. 
 
Regnellidium diphyllum: 
 Replicate 1: sample peak particle number = 1222, standard1 peak particle number = 1737. 
 Replicate 2: sample peak particle number = 1180, standard1 peak particle number = 1613. 
 Replicate 3: sample peak particle number = 1137, standard1 peak particle number = 1759. 
 
Marsilea minuta: 
 Replicate 1: sample peak particle number = 1892, standard1 peak particle number = 1118. 
 Replicate 2: sample peak particle number = 1850, standard1 peak particle number = 1209. 
 Replicate 3: sample peak particle number = 1892, standard1 peak particle number = 1227.   
 
Salvinia cucullata: 
 Replicate 1: sample peak particle number = 1084, standard1 peak particle number = 1484, standard2 peak particle number = 
1170. 
 Replicate 2: sample peak particle number = 1129, standard1 peak particle number = 1552, standard2 peak particle number = 
1253. 
 Replicate 3: sample peak particle number = 1229, standard1 peak particle number = 1584, standard2 peak particle number = 
1500.

Gating strategy For particle acquisition, we set a threshold of FL2-H = 52 for the samples of Pilularia americana, Regnellidium diphyllum, and 
Marsilea minuta. For Salvinia cucullata, a threshold of FL2-H = 100 is applied. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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