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1. Abstract 

Foraminifera occupy a geological range from the early Cambrian to the present day. 

Their well preserved shells, high relative abundance, and short response time to chang-

ing environmental conditions make foraminifera ideal proxies for environmental change. 

Benthic foraminifera are a valuable but poorly understood paleobiological proxy for the 

reconstruction of environmental conditions on continental shelves occupied by arctic and 

subarctic waters. This study identifies, examines, and quantifies calcareous benthic 

foraminiferal faunas from a sediment core taken from the Denmark Strait. Our analysis 

of three-thousand individuals from ten discrete samples aim to provide a better under-

standing of the modern patterns of foraminiferal distribution in the Denmark Strait, an 

important area in regulating climate. We find that the variability in foraminiferal taxa 

reflect changes in the environment, specifically current velocity, over the past (approxi-

mately) 600 years. The dominant genera, Cibicides, Elphidium, and Buccella, in the 

studied core have shown significant variability in abundance through time. The variabili-

ty in these genera support a change from a warmer climate with stronger current veloci-

ties and meltwater influx (likely the Medieval Warm Period) to a cooler climate, with 

slower current velocities and less meltwater influx (most likely the Little Ice age), and 

finally a shift to our present day environment in which the climate in the region is 

warming due to anthropogenic impacts. Although more work needs to be done, it is 

clear that benthic foraminifera in the region respond to changing climate conditions and 

are valuable proxies for environmental change.  

2. Objectives and introduction 

2.1 General objectives  

Our study aims to provide a better understanding of recent benthic foraminiferal assem-

blages in the subarctic — a region that plays a major role in the global climate system. 

Due to their well preserved shells, high abundance, and short response time to changing 
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conditions, foraminifera make ideal indicators of environmental change (Alve et al., 

2016; Loeblich and Tappan, 1988). More knowledge about the relationship between the 

responses of the benthic foraminiferal fauna to various environmental changes are need-

ed in order to improve the application of subarctic benthic foraminifera as proxy indica-

tors of modern and past environments. This study aims to:  

i. identify and quantify 3,000 calcareous, benthic foraminifera from ten discrete 

samples from 0-9.5 cm of a sediment core from the Denmark Strait region.  

ii. evaluate faunal abundance and variability as a tool in assessing climate fluctua-

tions in the Denmark Strait region.    

iii. improve upon our knowledge of the distribution of foraminifera in the subarctic in 

order to increase their value as proxy indicators for past and modern environmen-

tal change (as well as anthropogenic impacts).  

Because Foraminifera occupy a large geological range, foraminifera shell chemistry is 

commonly used as a proxy for ocean temperature and other conditions in paleoclimate 

reconstructions. Benthic foraminifera are also useful indicators of ecological variability 

because their species composition, abundance, and distributional pattern mainly depend 

on environmental conditions (Lorenz, 2005). Due to their ecological sensitivity, taxa 

variability may be used as an indicator for distinct sediment facies or hydrographic con-

ditions. Furthermore, foraminiferal assemblages are widely used as indicators of recent 

and ancient changes in water mass circulation and sea-water depth (Armstrong and 

Brasier, 2005). While several studies focus on the use or development of foraminifera as 

a bioindicator in areas of the Mediterranean, the Atlantic Coast, and southern Norway 

fjords, few studies focus on high latitude regions. Yet, the high latitude regions are ex-

tremely valuable in monitoring environmental change, and thus an ideal area to test the 

applicability of benthic foraminifera as tools in assessing environmental change.  
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2.2 Foraminifera  

With an estimated 10,000 extant species, foraminifera represent the most diverse group 

of shelled microorganisms in modern oceans (Sen Gupta, 1999). Foraminifera, meaning 

‘hole bearers,’ are amoeboid protists and classified as belonging to the kingdom Proto-

zoa, to the phylum Sarcodina, to the class Rhizopoda, and to the order Foraminiferida 

(Armstrong and Brasier, 2005; Geslin, 2000). Foraminifera play an important role in 

ecosystem functioning and deep-sea carbon cycling, and are enormously diverse in terms 

of species and shell morphology (Gooday, 1992).  

2.2.1 The cell 

Living foraminifera are made up of a single cell, including an inner cell body, the endo-

plasm, and the outer layer, the ecto-

plasm (Figure 2.1). The endoplasm, 

protected by the shell (known as the 

test), contains a single or several nu-

clei, food vacuoles, and organelles 

such as mitochondria and ribosomes. 

The ectoplasm is composed of a mo-

bile film of pseudopodia which are 

always changing (Armstrong and 

Brasier, 2005). Pseudopodia are used 

in feeding and locomotion.  

2.2.2 Life cycle  

Few species life cycles have been 

studied. The individual lifespans of 

foraminifera vary greatly by a few 

weeks, up to about two years. However, their main period of growth and calcification is 
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Fig. 2.1 A cross section of a living single chambered benthic 
foraminiferid  (Armstrong and Brasier, 2005).



thought to occur primarily during the vegetation season, or times of higher food avail-

ability (Linke et al., 1995; Wollenburg and Mackensen, 1998; Bauch et al., 2004). Gener-

ally, foraminifera reproduce by an alternation between sexual (gamont generation) and 

asexual (agamont generation) reproduction (Armstrong and Brasier, 2005). The asexual 

generation begins by splitting the cytoplasm into haploid daughter cells, which contain a 

nucleus with half of the chromosomes found in the parent nucleus. The haploid daughter 

cells are released into the water column and chamber formation begins. Sexual reproduc-

tion begins with the formation of gametes, by dividing the cytoplasm mitotically. The 

gametes are then released into the water column where two gametes fuse to form the 

next agamont generation  (Armstrong and Brasier, 2005).  

2.2.3 Modes of life  

The majority of foraminifera are benthic organisms, living on the sea floor. The remain-

ing are planktonic and live within the water column. This study focuses on benthic gen-

era. Benthic foraminifera may be categorized as epifaunal or infaunal. Epifaunal genera 

live on the surface of soft substrates such as the sea floor sediment, or hard substrate 

such as shells of other organisms, plants, or rocks (Murray 2006). Some epifaunal taxa 

may also be sessile, attached to the substrate by ways of organic glue. Sessile taxa may 

be either attached and mobile or attached and immobile. Alternatively, infaunal benthic 

foraminifera live within the sea floor sediment, the majority of which live within the top 

few centimeters and may be attached, free, or clinging (Murray 2006).  

2.2.4 The test 

The foraminiferal test is multi-purpose and serves to reduce stressors, to provide shelter, 

to aid in reproduction, to control buoyancy, and to assist in the growth of the cell (Mur-

ray, 2006). For example, test function may include protection from accidental ingestion 

by other organisms and infestation by parasites, protection from ultraviolet radiation, 

water turbulence, as well as salinity and toxin fluctuations (Armstrong and Brasier, 
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2005). Tests are generally constructed by chamber in incremental additions. The test is 

especially important in many classification methods and may be based upon the compo-

sition and structure, chamber shape and arrangement, aperture shape and position, sur-

face ornamentation, as well as other morphological features (Loeblich and Tappan, 

1988).  

The three basic test wall compositions include organic, agglutinated, and secreted calci-

um carbonate (Schweizer et al., 2008). All foraminifera tests collected in this study are 

calcareous. Calcareous forms were cho-

sen over agglutinated foraminifers due 

to the fact that the former easily disin-

tegrate after death and thus result in 

variable and typically very low down 

core abundances of tests or test frag-

ments (Brodniewicz, 1965; Polyak, 

2002). Calcareous tests can be further 

divided into three main groups; micro-

granular, porcelaneous, and hyaline. 

Microgranular calcareous tests consist 

of tightly packed rounded grains of cal-

cite and are confined to the Paleozoic 

(541 to 252.17 million years ago). 

Porcelaneous calcareous tests lack 

pores and consist of elongated high 

magnesium calcite crystals. The rod like 

crystals are randomly arranged in the 

interior wall and horizontally ordered on 

outer and inner test surfaces. Hyaline cal-
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Fig. 2.2 Illustrates the common types of foraminiferal 
chamber arrangements. 1. unilocular, 2. uniserial, 3. bise-
rial, 4. Triserial, 5. planispiral to biserial, 6. milioline, 7. 
planispiral evolute, 8. planispiral involute, 9.streptospiral, 
10. trochospiral (dorsal view), 11. trochospiral (edge 
view), 12. trochospiral (ventral view) (Loeblich and Tap-
pan, 1964; Ucl.ac.uk, 2016). 

http://tools.wmflabs.org/timescale/?Ma=541%2525E2%252580%252593252.17
https://en.wikipedia.org/wiki/Myr


careous tests are perforate (with pores), appear glassy, and consist of interlocking calci-

um carbonate microcrystals (Hesemann, 2016). All foraminifera tests collected in this 

study have porcelaneous or hyaline calcium carbonate tests.  

Foraminifera may build tests with a sin-

gle chamber (unilocular), or with multi-

ple chambers (multilocular). The most 

common chamber arrangements are as 

follows and are illustrated in figure 2.2: 

(1) Unilocular, or consisting of a single 

chamber, (2) uniserial, consisting of 

chambers added in a single linear series, 

(3) biserial, consisting of chambers 

added in a double linear series, (4) trise-

rial, consisting of chambers added in a 

triple linear series, (5) planispiral to bis-

erial, where the mode of chamber addi-

tion changes during growth (6) milioline, 

consisting of  tubular chambers, coiled 

like a broken spiral. (7) planispiral evo-

lute, consisting of chambers added in a 

coil on a single plane (evolute refers to 

planispiral varieties where all chambers 

are visible), (8)  planispiral involute, consisting of chambers added in a coil on a single 

plane (involute refers to planispiral varieties where only the chambers of the last coil are 

visible), (9) streptospiral, in which chambers are coiled in successively changing planes, 

and (10-12) trochospiral, consisting of chambers added  in a three dimensional spiral 

(Loeblich and Tappan, 1964). 
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Fig. 2.3 Illustrates the common types of foraminiferal 
aperture types. 1. open end of tube, 2. terminal radiate, 3. 
terminal slit, 4. umbilical, 5. loop shaped, 6. interiomar-
ginal, 7. interiomarginal multiple, 8. areal crbrate, 9. with 
phialine lip, 10. with bifid tooth, 11. with umbilical teeth, 
12. with umbilical bulla (Loeblich and Tappan, 1964; 
Ucl.ac.uk, 2016).



Additionally, foraminiferal test aperture shape and position is an important morphologi-

cal feature in classification. The aperture is defined as the opening in the last chamber 

of the test. The function of the aperture is to connect the external pseudopodia with the 

internal endoplasm and acts as a passage for the cytoplasm, food, excretory outputs, 

and reproductive cells (Armstrong and Brasier, 2005).  Foraminifera may have a single 

or multiple apertures which vary widely in shape and size. The most common aperture 

types are as follows and are illustrated in figure 2.3: (1) open end of tube, (2) terminal 

radiate, (3) terminal slit, (4) umbilical, (5) loop shaped, (6) interiomarginal, (7) interi-

omarginal multiple, (8) areal crbrate, (9) with phialine lip, (10) with bifid tooth, (11) 

with umbilical teeth,  and (12) with umbilical bulla (Loeblich and Tappan, 1964).  

2.2.5 Loeblich and Tappan classification scheme 

In this work, the Loeblich and Tappan foraminiferal classification scheme is used for 

classification at the genera level. Loeblich and Tappan’s classification scheme is primari-

ly based on the composition and structure of the foraminiferid test wall and emphasizes 

features which are visible with an optical microscope. In order of significance, the 

scheme takes into account, (1) wall structure and composition, (2) chamber shape and 

arrangement, and (3) apertures and ornamentations (Armstrong and Brasier, 2005). The 

scheme identifies the following suborders; Allogromiina, Textulariina, Fusulinina, Invo-

lutina, Spirillinina, Carterinina, Miliolina, Silicoloculinina, Lagenina, Robertinina, Glo-

bigerinina, and Rotaliina. The genera identified in this study belong to four suborders; 

Miliolina, Lagenina, Robertinina, and Rotaliina, and hence is where the following de-

scriptions will focus.  

Suborder Miliolina: Foraminifera belonging to the suborder Miliolina have imperforate 

(lacking pores), calcareous tests. Miliolina tests are porcelaneous and milky white in ap-

pearance. The initial chamber (proloculus) is planispirally coiled. Following growth may 
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continue in a planispiral fashion, in a uniserial fashion where the test may uncoil, or in a 

streptospiral fashion where the chambers are coiled in successively changing planes (like 

a ball of yarn) (Armstrong and Brasier, 2005; Loeblich and Tappan, 1988). Identified 

genera belonging to the suborder Miliolina include Triloculina sp. and Quinqueloculina 

sp. 

Suborder Lagenina: Foraminifera belonging to the suborder Lagenina have perforate, 

monolamellar (wall with outer lamella only, lacking median layer and inner lamella) test 

walls composed of low magnesium calcite. Lagenina may be unilocular (consisting of a 

single chamber), uniserial, (consisting of chambers added in a single linear series), or  

multi chambered with serial or planispiral chamber arrangement. (Loeblich and Tappan, 

1988; Sen Gupta, 1999). Identified genera belonging to the suborder Lagenina include 

Fissurina sp. and Oolina sp.  

Suborder Robertinina: Foraminifera belonging to the suborder Robertinina have planispi-

ral to trochospiral multi chambered tests, tests walls are hyaline, perforate,  aragonite 

(orthorhombic crystal form of calcium carbonate) (Loeblich and Tappan, 1988; Sen 

Gupta, 1999). Identified genera belonging to the suborder Robertinina include Hoeglund-

ina sp. 

Suborder Rotaliina: Foraminifera belonging to the suborder Rotaliina have perforate, 

bilamellar (chamber wall formed primarily of two mineralized layers), calcareous test 

walls of low magnesium calcite. Tests are multilocular, and chamber arrangement is low 

or (rarely) high trochospiral, planispiral, or irregular (Loeblich and Tappan, 1988; Sen 

Gupta, 1999). Identified genera belonging to the suborder Rotaliina include Bolivina sp., 

Buccella sp., Cassidulina sp., Cibicides sp., Elphidium sp., Haynesina sp., Melonis sp., 

Nonionellina sp., Pullenia sp., and Trifarina sp. 
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2.2.6 Foraminifera and environmental factors 

Due to the fact that benthic foraminifera are characterized by fast turnover rates (short 

life cycle), large numbers, the ability to react quickly to environmental disturbances 

(Coccioni, 2000), as well as preference for specific environmental conditions (Boltovskoy 

et al., 1991), studies have shown that benthic foraminiferal assemblages may used as in-

dicators of environmental change (Alve, 1995; Bouchet et al., 2012; Dolven et al., 2013). 

According to Murray (2001), benthic foraminiferal assemblages are controlled by envi-

ronmental factors that have reached their critical thresholds. This theory, termed ‘niche 

theory’ states that for each species, in variable environments, different factors may limit 

distributions both temporally and spatially. The variability of many environmental fac-

tors including light, food, substrate, salinity, nutrients and oxygen, temperature, and 

water masses, control the composition of foraminiferal assemblages. Thus foraminifera 

may be used as indicators of specific environments or environmental change.  

Light: The photic zone (zone of light penetration) is dependent upon water clarity and 

the sun’s incident angle. Because of this, the photic zone generally decreases in depth 

toward high latitudes. Due to high primary production in photic zones as well as protec-

tion and the availability of substrates (sea grasses), these zones are very agreeable to 

foraminiferal life, especially to Miliolines such as Quinqueloculina. In addition, popula-

tions of epifaunal forms (living at the surface) who feed upon diatoms may fluctuate ac-

cording to the seasonal cycle (Armstrong and Brasier, 2005).  

Food availability: Foraminifera may feed on unicellular algae, diatoms, phytodetritus, 

bacteria, other protozoa, as well as small crustaceans such as copepods which are cap-

tured by pseudopodia (Armstrong and Brasier, 2005). In the Arctic region, Wollenburg 

and Mackensen (1998) found that the highest numbers of living foraminifera are associ-

ated with high productivity zones, which generally occur in areas that are seasonally ice-

free, or ice-free year-round. Two of the main important food sources of benthic 
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foraminifera, phytodetritus and bacteria are directly linked to primary production. In a 

study looking at benthic foraminiferal biodiversity response to a changing Arctic palaeo-

climate over the past 24,000 years, Wollenburg (2007) found that species richness re-

flected the availability of food which depends mainly on the extent and duration of sea-

sonal sea-ice retreat and formation. Furthermore, the ‘energy-richness hypothesis’ postu-

lates that warmer, and in turn, more productive waters are more diverse (with more in-

dividuals and more species) (Currie, 1991; Wollenburg, 2007).  

Substrate: Certain foraminifera prefer to live in areas where hard substrate such as rock, 

shell, or seagrasses are abundant. These forms usually attach themselves either tem-

porarily or permanently to the substrate by means of a flat lower surface. One such 

genus that fits this mode of life is Cibicides sp. The majority of benthic forms are found 

on (epifaunal) or within (infaunal) the sediment down to a depth of 200 mm below the 

surface. Many infaunal foraminifera have elongated tests (Armstrong and Brasier, 2005). 

Salinity: The highest diversity foraminiferal assemblages are usually found within water 

of normal salinity (35‰). Low salinity waters tend to favor agglutinated foraminifera 

and certain hyaline forms such as Elphidium's. Alternatively hyper saline waters favor 

porcelaneous forms such as Miliolina’s (eg. Quinqueloculina sp.). Miliolina and hyaline 

forms have been shown to be useful indicators of paleosalinity (Armstrong and Brasier, 

2005). 

Nutrients and oxygen: In areas of low food supply (where rates of primary production 

are low), foraminiferal densities also tend to be lowered, however diversity may still be 

high in these areas. Conversely, very high rates of primary production may also yield low 

foraminiferal densities due to bacterial blooms, and anaerobic conditions. In these low-

oxygen areas, eutrophic foraminiferal forms dominate (such as Bolivina sp.) or aggluti-

nated forms (Armstrong and Brasier, 2005). However, temporal variability in food may 
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result in reproductive responses and result in high abundances of opportunistic taxa 

(e.g. Duchemin et al., 2008; Fontanier et al., 2006; Gooday and Hughes, 2002).  

Temperature: Each foraminiferal species is adapted to a specific temperature range in 

which successful reproduction can take place. In general temperature ranges are more 

narrow for low-latitude faunas than those faunas of high-latitudes (Armstrong and 

Brasier, 2005). 

Water masses: It has been shown that certain benthic foraminiferal species correspond 

to specific water masses. Therefore, the distribution of such benthic forms can be used 

to reconstruct the history of a water mass in relation to climactic changes (Armstrong 

and Brasier, 2005). 
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Fig. 2.4 Shows the modern maximum sea ice extent (month of March) from the beginning of the satellite record to 
the core extraction year (1979-1998) and the location of the studied sediment core. Data was obtained from the 
National Snow and Ice Data Center (NSIDC). 



Anthropogenic change: The response of benthic foraminifera to anthropogenic induced 

climate change (including a decrease in seasonal sea-ice extent, lengthening sea-ice free 

seasons, and increased freshwater influx due to melting glaciers) is not well understood. 

Benthic foraminifera are not considered to be direct proxies for sea-ice cover, however 

they may respond to the change in surplus of food often available at sea-ice edges (Sei-

denkrantz, 2013) (Note: the studied core is located on the modern seasonal sea ice edge, 

see figure 2.4). The composition of benthic foraminiferal faunas is widely known to be 

highly dependent on food supply. Therefore phytoplankton blooms observed in connec-

tion to sea-ice and especially the ice edge may have a major impact on benthic 

foraminiferal assemblages, with some species being especially sensitive to food supply.  

3. Study area     

3.1 The Denmark Strait 

The area of focus of this thesis is the Denmark Strait (figure 3.1) In this study, sediment  

samples and accompanying benthic foraminifera from the core KN158-4-67 GC are ana-

lyzed. The Denmark Strait is a 480 km long body of water that separates Greenland and 

Iceland. This oceanic strait connects the Greenland Sea (an extension of the Arctic 

Ocean) to the Irminger Sea (part of the Atlantic Ocean).  

The strait is characterized by a shallow sill with a maximum depth of 620 meters and 

represents the western portion of the Greenland-Scotland Ridge system (Lorenz, 2005). 

The Denmark Strait is very significant in global ocean circulation and the exchange of 

water masses, as it serves as a passageway for waters from the northern seas into the 

North Atlantic. Approximately 3 million cubic meters per second of dense water formed 

in the northern seas pass over the ridge between Greenland and Iceland and subsequent-

ly sink into the North Atlantic. This overflow of cold, dense water, termed the Denmark 
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Strait Overflow (DSO), 

makes up a principal 

component and the 

densest fraction of the 

North Atlantic Deep 

Water (NADW), and 

hence is critical to 

Global Thermohaline 

Circulation (THC), or 

the ‘Great Oceanic 

Conveyor Belt’ (Hansen 

and Østerhus, 2000). 

The strength of the 

DSO depends mainly on 

the density gradient between water masses north and south of the Denmark Strait  and 

the height of the dense water above the sill (Lorenz, 2005; Whitehead et al., 1974).  

The Denmark Strait is characterized by three currents; the East Greenland Current 

(EGC), a cold, low-saline (<0 °C, <34 ‰), surface polar current which flows southward 

along the eastern coast of Greenland; the North Icelandic Irminger Current (NIIC), a 

surface, relatively warm, saline (6-10 °C, >35 ‰) northward flowing branch of the North 

Atlantic current (Swift, 1986); and the newly discovered North Icelandic Jet (Jonsson 

and Valdimarsson, 2004), a bottom cold and dense, narrow current which runs south-

west through the strait at a depth of about 600 meters (Swift, 2005; Hansen and Øster-

hus, 2000; Våge et al., 2011) (figure 3.2).  Currents north of the sill show velocities on 

average of about 0.10 m/s (Lorenz, 2005; Jonsson and Valdimarsson, 2004) and a mean 

velocity of 0.56 m/s south of the sill (but up to 1.30 m/s) (Girton and Stanford, 2003; 

Lorenz, 2005). The Denmark Strait Overflow is fed by the North Icelandic Jet and the 
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Fig. 3.2 Shows the location of the Denmark Strait and major current systems 
(Curry and Mauritian, 2005). 



East Greenland Current (Våge et al., 2011). Because of its importance to the NADW 

and THC, as well as its close proximity to the Greenland Ice sheet (GIS), the Denmark 

Strait region is critical to Earth’s climate system (Hansen et al., 2004) and can be re-

garded as a key region for assessing environmental and climate fluctuations (Lorenz, 

2005). Dansgaard et al., 1993, describes the rapid climate oscillations of the last ice-age, 

seen in ice and sediment-core paleoclimate records as directly related to the ‘shutoff’ and 

‘resurgence’ of deep water formation, of which a key component is the Denmark Strait 

Overflow. This ‘shutoff’ and ‘resurgence’ may be regulated by freshwater input to the 

high-latitude seas by the melt and discharge of water and ice from the Greenland Ice 

Sheet (GIS). In fact, a study by Rahmstorf et al., 2015 showed an exceptional slowdown 

in the last century of the Atlantic Meridional Overturning Circulation (AMOC), with 

melt from the Greenland Ice sheet as a possible contributor. Continued warming and 

continued slowdown of the THC triggers cooling in the North Atlantic, Europe, and 

North America (Vellinga and Wood, 2007). Many computer simulations have also 

demonstrated the impact of freshening polar and subpolar seas on deepwater formation 

and global climate (Dickson et al., 2002). The intensity of the DSO may also be influ-

enced by the growth and shrinkage of land based ice-sheets of Greenland and Iceland 

due to isostatic uplift and rebound, sea level rise and lowering, as well as changes in ba-

thymetry and the opening of the strait (Lorenz, 2005).  

In the vicinity of our core location lies two of Greenland’s major marine terminating 

glaciers, Kangerdlugssuaq glacier (just north of our core) and Helheim Glacier (just 

south of our core) (Nick et al., 2013). Present day estimates of ice discharge are  29 ± 2 

km3/yr for Kangerdlugssuaq Glacier, and 23 ± 1 km3/yr for Helheim Glacier (Rignot et 

al., 2004). Therefore, it can be said that the study area is highly glacially influenced. 

Additionally, through high-resolution mapping of geomorphic features related to the 

maximum extent of the GIS during the Little Ice Age (at the end of the nineteenth cen-

tury), Kjeldsen et al., 2015 estimated the total ice mass loss for the period: 1900–1983 to 

"14



be 75.1 ± 29.4 gigatonnes per year. It is also important to note that this region is influ-

enced by seasonal sea-ice coverage. Modern summer waters are sea-ice free where the 

minimum extent occurs in September (on average). Winter waters undergo sea-ice 

growth, the maximum extent occurring during the month of March (on average). During 

sea-ice free periods, primary production and thus benthic life increase on Arctic shelves 

in response to nutrients of riverine input and upwelling effects at the ice edge (Smith et 

al., 1987; Grebmeier et al., 1995; Wollenburg and Mackensen, 1998).  

4. Materials and Methods 

4.1 Sediment samples  

Sediment core samples were received from Lamont Doherty Earth Observatory’s Core 

Repository at Columbia University (see Figure A.1, appendix). Ten sediment samples 

were taken from core KN158-4-67 GC in discreet 1.0 cm intervals from 0.0 cm (core top) 

to 9.5 cm (downcore). Table A.1 (appendix) details preliminary data including the sam-

ple number and name, the given International GeoSample Number (ISGN), sample in-

tervals (minimum and maximum depth in core), the parent core ISGN, the sample size, 

wet weight, and collection date. KN158-4-67 GC, a gravity core, was collected by the 

research vessel, Knorr, owned by the United States Navy and operated by the Woods 

Hole Oceanographic Institution (WHOI) on July 10th, 1998 at a depth of 447 meters. 

The core’s location coordinates are latitude: 65.961, longitude: -30.331 (figure 4.1). The 

reported total core length is 72 cm and core diameter is 10 cm. The top 10 centimeters 

of core are described as a brown terrigenous clay consisting of abundant foraminifera.  

4.2 Drying and sieving  

In order to separate the foraminifera from the sediment, disaggregation and sieving 

techniques were used. Odd-numbered samples (sample # 1,3,5,7, and 9) were oven dried 

at 60 ℃ for 24 hours, disaggregated, and sieved with a warm water rinse. Sieving was 
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performed at 63 µm (U. S. Standard Sieve No. 230) to begin, and finer remaining sedi-

ments were sieved at 125 micrometers (U. S. Standard Sieve No. 230). Even-numbered 

samples (sample # 2,4,6,8, and 10) were air-dried over a period of one week. The 

foraminifera were then manually extracted by lightly breaking up the sediment. In this 

study, counts are based on the > 63 μm size fraction. This size fraction was chosen in 

order to include smaller foraminiferal taxa. Although some studies of benthic 

foraminifera use the  > 125 μm size fraction, it had been shown that analyses of this 

larger fraction under-represents smaller species, juveniles, and results in a lower diversity 

(Fontanier et al., 2006). Three hundred specimens from each discrete sample were col-

lected.    

5. Foraminifera collection and identification 
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Fig. 4.1 Location of sediment core KN158-4-67 GC (yellow star). Coordinates, latitude: 65.961, longitude: 
-30.331(Google Earth).



Foraminifera specimens were collected, identified, imaged, and archived at the American 

Museum of Natural History’s microfossil laboratory and imaging facilities. Each sample 

was sprinkled sparsely across a picking tray and examined under a binocular microscope. 

In order to determine the abundances of the genera in the assemblages, a minimum of 

three hundred specimens from each sediment sample (three thousand specimens in total) 

were counted using the wetted tip of an artist's brush, and identified down to genera 

level following the generic classification of Loeblich and Tappan (1988), which is most 

commonly used for the identification of calcareous taxa. Foraminifera specimens were 

then transferred to cardboard slides coated with a water-soluble glue for permanent ref-

erence. Slides were then assigned an AMNH number for permanent housing and select 

specimens were imaged using a Morrell microscope and Nikon’s NIS imaging software. 

5.1 Morphological descriptions of genera  

Listed below are the morphological characteristics of each genus.  

Bolivina: Test is elongate. Chambers are broad, and biserially arranged throughout. 

Walls are calcareous, perforate. Aperture is narrow and terminal (Loeblich and Tappan, 

1988) (see Plate 9, appendix). 

Buccella: Test is lenticular, trochospiral. Dorsal side with smooth surface, and with nar-

row, slightly curved sutures (curved back toward the periphery). Those on the umbilical 

side (ventral, under side) are radial and incised, and chambers are slightly inflated. 

Aperture is interio-marginal (basal opening at margin of final chamber, along final su-

ture), midway between umbilicus and periphery, and may be covered by umbilical gran-

ules. Test composition is calcareous (Loeblich and Tappan, 1988). Oligocene to recent 

(see Plate 2, appendix). 
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Cassidulina: Test is lenticular, chambers are biserially arranged and planispirally en-

rolled. The wall is calcareous, hyaline, perforate. The surface is smooth with a polished 

appearance. Sutures are radial and curved. The aperture is a narrow curved or arched 

slit (Loeblich and Tappan 1988) (see Plate 6, appendix). 

Cibicides: Test is plano-convex as it is commonly attached to a substrate. Spiral side is 

flat to concave, with depressed sutures. Chamber arrangement is trochospiral through-

out and walls are calcareous, and thick. Spiral side is coarsely perforate, and umbilical 

side finely perforate. Aperture form is a slit or lip (Loeblich and Tappan, 1988). Pale-

ocene to recent; cosmopolitan (see Plate 1, appendix).  

Elphidium: Test is lenticular, chamber arrangement is planispiral, and bilaterally sym-

metrical (having two equal sides). Chambers are distinct, and somewhat inflated. The 

final chamber is often enlarged and projects beyond the general contour of the test. Su-

tures are distinct with bridges and depressions. Walls are calcareous, finely perforate. 

Aperture consists of a row of pores at the base of the septal face (Loeblich and Tappan, 

1988) (see Plate 3, appendix). 

Fissurina: Test is globose to ovate and single chambered. Wall material is calcareous. 

The aperture position is terminal and the aperture form is a slit (Loeblich and Tappan, 

1988) (see Plate 6, appendix). 

Haynesina: Test is broadly rounded with a perforated surface. Chamber arrangement is 

planispiral. Lacks sutural bridges. Considerable development of granular material on the 

first chamber is typical. Aperture is a basal slit (Loeblich and Tappan, 1988). Neogene 

to recent (see Plate 5, appendix). 
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Hoeglundina: Test is biconvex (lenticular), trochospiral. Chambers are triangular and 

straight on the umbilical side and curved on the spiral side. Wall is transparent, hyaline, 

calcareous, and finely perforate. Aperture position is peripheral and aperture form is a 

slit (Loeblich and Tappan, 1988) (see Plate 5, appendix). 

Lagena: Test is calcareous perforate, and single chambered, globose to ovate. Test may 

be smooth or ornamented. Aperture is terminal, round. Test neck is often pronounced 

(Loeblich and Tappan, 1988) (see Plate 8, appendix). 

Melonis: Test is planispiral involute and symmetric. Walls are calcareous, perforate and 

sutures are flush. Aperture is a curved basal slit (Loeblich and Tappan, 1988) (see Plate 

4, appendix). 

Nonionellina: Test is planispiral involute and asymmetric. Walls are calcareous, perfo-

rate. Chambers rapidly increase in height. Aperture is a basal slit (Loeblich and Tappan, 

1988) (see Plate 9, appendix). 

Oolina: Test is uniocular, ovate or globular. Walls are hyaline, perforate, and can be 

smooth or ornamented with striations.. Aperture is round to ovalular, terminal, with or 

without a lip (Loeblich and Tappan, 1988) (see Plate 7, appendix). 

Pullenia: Test is globular, planispiral, involute. Chambers ares moderately inflated and 

sutures are radial and slightly depressed. Walls are calcareous and finely perforate, and 

the surface is smooth. Aperture is a narrow interio-marginal crescent extending across 

the periphery to the umbilici (Loeblich and Tappan, 1988) (see Plate 7, appendix). 
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Trifarina: Test is elongate and slightly tapering toward either end with an irregular 

uniserial arrangement. Aperture is terminal, central at the end of a tubular neck with a 

lip (Loeblich and Tappan, 1988) (see Plate 8, appendix). 

Triloculina: Test is triloculine (the final three chambers are visible externally). The 

aperture is terminal, at the end of the final chamber, with a bifid tooth. The test walls 

are composed of imperforate, porcelaneous calcite (Loeblich and Tappan, 1988) (see 

Plate 8, appendix). 

Quinqueloculina: Test is composed of imperforate, porcelaneous calcite. Three chambers 

are visible from the exterior on one side of the test and four are visible from opposite 

side. Aperture is terminal, rounded, with simple or bifid tooth  (Loeblich and Tappan, 

1988) (see Plate 9, appendix). 

6. Chronology 

6.1 Radioactive Isotope Analysis     

Chronologies of the investigated sediment core were constructed based on ages obtained 

by radioactive isotope analysis (137Cs and 210Pb dating). Environmental radionuclides, 

both natural and artificial, are those radionuclides that are commonly occurring and 

widely distributed in the environment and are measurable (Walling 2003). Environmen-

tal radionuclides, specifically Lead-210 and Cesium-137 are a widely used to tool in 

geochronology to estimate sediment accumulation rates and sediment age in recent sam-

ples, deposited during the last 100-150 years. The analyses for this work was performed 

at the Woods Hole Oceanographic Institution’s (WHOI) Café Thorium, in the Depart-

ment of Marine Chemistry and Geochemistry. The core was dated on a 1.5 cm interval 

and five samples were tested for two radionuclides (137Cs and 210Pb) and analyzed. Dried 

and ground sediment samples were placed in calibrated counting jars on the gamma 
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counter for 12-48 hours. Samples tested are as follows, sample #10: 0-0.5cm, sample #8: 

2-2.5cm, sample #6: 4-4.5cm, sample #4: 6-6.5cm, and sample #2: 8-8.5cm.  

6.1.2 Lead-210 (210Pb) 
210Pb is a naturally occurring radionuclide that is part of the Uranium-238 decay series. 

In the Uranium-238 decay series, the radium isotope, Radium-226 (having a half-life of 

1,622 years), decays to the inert gas Radon-222 (having a half-life of 3.83 days), which 

then decays through four short-lived isotopes, each with half-lives of minutes, to the 
210Pb radioisotope (Appleby and Oldfield 1983). Lead-210 decays exponentially with 

time according to its relatively short half-life of 22.2 years (Appleby and Oldfield, 1983). 

The total activity of 210Pb must be separated into two components; unsupported activity 

(excess) and supported (background) activity. Young sediments will have unsupported 
210Pb, and it is this component that is used in geochronological estimates. The support-

ed 210Pb can be separated from the total 210Pb, to find the unsupported 210Pb compo-

nent:   

210Pb Unsupported = 210Pb Total  – 210Pb Supported                               (Equation 1.) 

As 238U decays in continental 

rocks, some of the generated 
222Rn gas escapes into the at-

mosphere, where the unsupport-

ed component of 210Pb is pro-

duced. Here the 210Pb radioiso-

tope attaches to atmospheric 

aerosols and is washed out of the 

atmosphere by dry fallout and 

precipitation, deposited, and in-
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Fig. 6.1 Illustration of  sources of supported (background) and un-
supported (excess)  210Pb. 



corporated into new sediments. The existence of 210Pb in the atmosphere is short-lived, 

having an average residence time on the order of 5 to 10 days (Krishnaswami et al. 

1978). This unsupported 210Pb is not replaced as it decays. The global 210Pb natural at-

mospheric flux is 1.3-5.8 (picocurie) pCi in-2 y-1 (Appleby and Oldfield 1983). On the 

contrary, supported 210Pb refers to the background level of 210Pb in sediment (eroded 

from rocks and incorporated into sediments). As this background 210Pb is lost by ra-

dioactive decay, new 210Pb is created by the decay of 226Ra contained in the sediments 

(figure 6.1).  

The Constant Rate of Supply (CRS) model 

is commonly used to determine the age of a 

given depth from a 210Pb vertical profile 

within a sediment column. The CRS model 

is the most widely accepted and relies on 

the following assumptions: (1) there is a 

constant unsupported 210Pb flux to the sed-

iment through time, (2) the initial 210Pb 

concentration in the sediment is variable, 

and (3) the influx rate of sedimentation is 

variable (Appleby and Oldfield, 1978). Ac-

cording to this model, the initial concentra-

tion C0(t) of unsupported 210Pb in sediment 

of age t years must satisfy the following 

equation: 

C0(t) r(t) = constant                        (Equation 2.) 
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Fig. 6.2 Shows total 210Pb activity from core top to 
down core. 



Where r(t) (grams/cm2 yr) is the dry mass sedimentation rate at time t, and C0(t) is the 

unsupported 210Pb in sediment of age t years. Following this, the relationship between 

the age of the deposit at depth x is as follows:                              

           

                                       (Equation 3.)                               

               

Where t is time, A0 is the total unsupported 210Pb activity in the sediment column, Ax is 

the total unsupported 210Pb activity in the sediment column beneath depth x, and λ is 

the 210Pb radioactive decay constant of 0.03114 y -1. The sedimentation rate, r, can be 

calculated as follows: 

   

         (Equation 4.) 

 And the net flux, P, of unsupported 210Pb activity to the sediment can be calculated by:  

         (Equation 5.) 

6.1.3 Lead-210 (210Pb) results  

No excess or supported 210Pb was measured from 2 cm and below. In sample #8, #6, 

#4, and #2, the becquerel/gram (Bq/g) values are the same within error (and therefore 

there is no excess or supported 210Pb in these samples) (see figure 6.2, and table A.2 in 

the appendix). This lack of 210Pb indicates that at least five half lives must have passed 

making these sediments greater than 100 years old. In addition, as this remains constant 

down the core it suggests a stable core with no mixing. Although a 210Pb signal is seen 

in the top sample (0-0.5cm), indicating that this sample is less than 100 years old, this 

is not sufficient to estimate an age or sedimentation rate.  

6.1.4 Cesium-137 (137Cs) 
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137Cs is an artificial radionuclide with a half-life of 30.2 years, and is used to validate 
210Pb geochronology with a time-dependent marker in order to produce a more effective 

model of age estimation (McHenry and Ritchie, 1977). 137Cs is a product of nuclear test-

ing and detectable levels begin in sediment in the year 1954 (known as the 137Cs hori-

zon). Similarly to unsupported 210Pb, 137Cs is released into the atmosphere, is deposited, 

and incorporated into the sediment. Along with the 1954 horizon, peaks of  137Cs can be 

identified in 1958 and 1963, because of the intensification of weapons testing during 

these years. These peaks in the sediment record can be used to calibrate other sediment 

dating methods, such as the those described earlier for the radioisotope, 210Pb.  

6.1.5 Cesium-137 (137Cs) results  

As expected, samples from 2 cm and below had no detectable 137Cs signal. However, the 

surface section (0-0.5 cm) showed measurable 137Cs (see table A.3, in appendix). Addi-

tionally, because there is no mixing downcore, this suggests that (1) the 0-0.5 cm has to 

be younger than 1954 (the 137Cs horizon) and (2) this top layer may have been deposited 

by some other transport process. 

6.1.6 Extrapolation of dating results 

Using the results obtained from the Lead-210 and Cesium-137 dating, ages were linearly 

extrapolated (assuming a constant sedimentation rate) (figure A.2, appendix). Using 

this method the following approximate age estimates are made: 0-0.5cm, 1954-1986; 

1-1.5cm, 1896-1946; 2-2.5cm, 1836-1916; 3-3.5cm, 1766-1878; 4-4.5cm, 1700-1846; 

5-5.5cm, 1636-1810; 6-6.5cm, 1570-1776; 7-7.5cm, 1506-1740; 8-8.5cm 1446-1706; and 

9-9.5cm, 1380-1670. Following this, the approximate sedimentation rate is 0.016 - 0.033 

cm/yr. Although this method provides a rough age estimate, presuming a constant rate 

of sediment accumulation, it is not a good assumption as rates typically vary through 

time, are not stable, and are influenced by decadal to century-scale variability, especially 

in Arctic regions (Smith, Alexander, and Jennings, 2002).  
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7. Results and discussion 

7.1 Distinguished foraminiferal genera 

A total of 16 benthic foraminiferal genera were distinguished in this study (Table 7.1). 

Raw data sets are shown in the appendix for identification in each sample down core 

(Tables A.4 - A.13).  

Table 7.1 Alphabetical list of all foraminiferal taxa identified including their genera and suborder.  

Foraminiferal abundances can be divided into three groups: genera with an occurrence of 

>15% are abundant, genera with an occurrence of 2-10% are common, and genera with 

an occurrence of <2% are rare (DeLaca, 1986). Figure A.3, appendix, details the relative 

Genera Suborder 

Bolivina sp. Rotaliina

Buccella sp. Rotaliina

Cassidulina sp. Rotaliina

Cibicides sp. Rotaliina

Elphidium sp. Rotaliina

Fissurina sp. Lagenina

Haynesina sp. Rotaliina

Hoeglundina sp. Robertinina

Lagena sp. Lagenina

Melonis sp. Rotaliina

Nonionellina sp. Rotaliina

Oolina sp. Lagenina

Pullenia sp. Rotaliina

Trifarina sp. Rotaliina

Triloculina sp. Miliolina

Quinqueloculina sp. Miliolina
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abundance of the 16 genera described from the core top to the core bottom. Abundant 

genera include Buccella sp., Cibicides sp., and Elphidium sp. Common genera include 

Cassidulina sp., Fissurina sp., Haynesina sp., Hoeglundina sp., and Melonis sp. And, 

rare genera include Bolivina sp., Lagena sp., Nonionellina sp., Oolina sp., Pullenia sp., 

Trifarina sp., Triloculina sp., and Quinqueloculina sp. 

7.2 Descriptions of foraminiferal assemblages 

0-0.5 cm assemblage: The 0-0.5 cm assemblage is the most recent (core top) and is 

younger than the year 1954 (the 137Cs horizon), as evident by the 137Cs signal (see 

chronology). It is characterized by a dominance of Cibicides sp. at  a 30.00% relative 

abundance, followed by Elphidium sp. at 21.33%, Buccella sp. at 16.00%, Cassidulina sp. 

at 9.00%, Haynesina sp. at 8.67%, Hoeglundina sp. at 6.00%, and Melonis sp. at 5.00%. 

All other genera are less than 5.00% in abundance (figure 7.1).  

1-1.5 cm  assemblage: The 1-1.5 cm assemblage cannot be dated as it lies in between 

two analyzed samples, however based on extrapolation it is estimated to lie between  

1896 and 1946. The 0-0.5 cm sample showed a 137Cs signal and is therefore younger than 
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Fig. 7.1 Shows the relative abundance of each genera in the 0-0.5 cm assemblage. 



1954, whereas the 2-2.5 sample showed no 137Cs signal, and no supported or excess 210Pb 

and is hence is greater than 100 years old. Based in the foraminiferal relative abun-

dances, the 1-1.5 cm assemblage more closely resembles the assemblage below (2-2.5 

cm), and therefore it is more likely that the assemblage is older than 100 years. This is 

especially apparent in the low relative abundance of the genera Cibicides. However, in 

order to make a further conclusion, this sample would have to undergo radioactive iso-

tope analysis or another dating method. The 1-1.5 cm assemblage is characterized by a 

dominance of Buccella sp. at  a 38.00% relative abundance, followed by Elphidium sp. at 
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Fig. 7.3 Shows the relative abundance of each genera in the 2-2.5 cm assemblage. 

Fig. 7.2 Shows the relative abundance of each genera in the 1-1.5 cm assemblage. 



25.33%, Haynesina sp. at 11.67%, Melonis sp. at 8.33%, Hoeglundina sp. at 5.67%, and 

Cibicides sp. at 5.00%. All other genera are less than 5.00% in abundance (figure 7.2). 

2-2.5 cm assemblage: The 2-2.5 cm assemblage is greater 100 years old as evident by the 

lack of access or supported 210Pb (see chronology). It should also be noted that all as-

semblages down core are also greater than 100 years old as the were deposited previous 

to the 2-2.5 assemblage. The 2-2.5 assemblage is characterized by a dominance of El-

phidium sp. at  a 31.33% relative abundance, followed by Buccella sp. at 27.33%, Hay-

nesina sp. at 10.00%, Cibicides sp. at 7.67%, Melonis sp. at 6.33%, and Cassidulina sp. 

at 5.67%. All other genera are less than 5.00% in abundance (figure 7.3).  
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Fig. 7.5 Shows the relative abundance of each genera in the 4-4.5 cm assemblage. 

Fig. 7.4 Shows the relative abundance of each genera in the 3-3.5 cm assemblage. 



3-3.5 cm assemblage: The 3-3.5 cm assemblage is greater 100 years old. The 3-3.5 as-

semblage is characterized by a dominance of Elphidium sp. at a 32.67% relative abun-

dance, followed by Buccella sp. at 21.00%, Cibicides sp. at 12.33%, Melonis sp. at 

10.33%, Haynesina sp. at 8.00%, and Cassidulina sp. at 6.00%. All other genera are less 

than 5.00% in abundance (figure 7.4). 

  

4-4.5 cm assemblage: The 4-4.5 cm assemblage is greater 100 years old. The 4-4.5 as-

semblage is characterized by a dominance of Cibicides sp. at  a 25.67% relative abun-

dance, followed by Cassidulina sp. at 16.33%, Buccella sp. at 16.00%, Haynesina sp. at 
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Fig. 7.7 Shows the relative abundance of each genera in the 6-6.5 cm assemblage. 

Fig. 7.6 Shows the relative abundance of each genera in the 5-5.5 cm assemblage. 



12.00%, Elphidium sp. at 11.00%, and Melonis sp. at 7.33%. All other genera are less 

than 5.00% in abundance (figure 7.5).  

5-5.5 cm assemblage: The 5-5.5 cm assemblage is greater 100 years old. The 5-5.5 as-

semblage is characterized by a dominance of Cibicides sp. at  a 31.00% relative abun-

dance, followed by Elphidium sp. at 16.67%, Buccella sp. at 15.67%, Haynesina sp. at 

11.67%, Melonis sp. at 8.67%, and Cassidulina sp. at 6.00%. All other genera are less 

than 5.00% in abundance (figure 7.6).  

6-6.5 cm assemblage: The 6-6.5 cm assemblage is greater 100 years old. The 6-6.5 as-

semblage is characterized by a dominance of Cibicides sp. at  a 48.00% relative abun-

dance, followed by Elphidium sp. at 14.00%, Buccella sp. at 13.00%, Cassidulina sp. at 

9.33%, and Haynesina sp. at 7.00%. All other genera are less than 5.00% in abundance 

(figure 7.7).  

7-7.5 cm assemblage: The 7-7.5 cm assemblage is greater 100 years old. The 7-7.5 as-

semblage is characterized by a dominance of Cibicides sp. at  a 36.00% relative abun-
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Fig. 7.8 Shows the relative abundance of each genera in the 7-7.5 cm assemblage. 



dance, followed by Buccella sp. at 22.00%, Elphidium sp. at 12.00%, Melonis sp. at 

7.33%, and Cassidulina sp. at 6.67%. All other genera are less than 5.00% in abundance 

(figure 7.8).  

8-8.5 cm assemblage: The 8-8.5 cm assemblage is greater 100 years old. The 8-8.5 as-

semblage is characterized by a dominance of Cibicides sp. at  a 46.00% relative abun-

dance, followed by Buccella sp. at 17.67%, Elphidium sp. at 13.67%, Melonis sp. at 

6.00%, and Hoeglundina sp. at 5.33%. All other genera are less than 5.00% in abun-

dance (figure 7.9) 
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Fig. 7.10 Shows the relative abundance of each genera in the 9-9.5 cm assemblage. 

Fig. 7.9 Shows the relative abundance of each genera in the 8-8.5 cm assemblage. 



9-9.5 cm assemblage: The 9-9.5 cm assemblage is greater 100 years old. The 9-9.5 as-

semblage is characterized by a dominance of Cibicides sp. at  a 35.33% relative abun-

dance, followed by Elphidium sp. at 18.33%, Buccella sp. at 13.00%, Melonis sp. at 

10.00%, Hoeglundina sp. at 5.67%, and Cassidulina sp. at 5.33%. All other genera are 

less than 5.00% in abundance (figure 7.10). 

  

7.3 Diversity Indices 

Biodiversity is one of the primary interests of ecologists, and as a result, many different 

measures (or indices) of biodiversity have been developed. In this study we utilize three 

measures of diversity, the Berger-Parker dominance index (d), the Simpson index (D), 

and the Shannon-Wiener Diversity Index (H).  

7.3.1 Berger-Parker dominance 

The Berger–Parker index is the fraction of total sampled individuals that is contributed 

by the most abundant species (May, 1975).  It is a simple measure of the numerical im-

portance of the most abundant species. For this study, foraminifera were identified to 

the genera level and therefore the Berger-Parker index is modified to the fraction of to-

tal sampled individual that is contributed by the most abundant genera:  

                       

 (Equation 6.) 

  

where Nmax is the number of individuals in the most abundant genera, and N is the total 

number of individuals in the sample. The reciprocal of the index, 1/d may also be used, 

in which case an increase in the value of the index will indicate a reduction in domi-

nance.  The Berger-Parker index, d, is plotted for all 10 samples in figure 7.11. Here a 

general a reduction in dominance (shown by a decrease in the Berger-Parker index), d 

over time can be seen from the oldest samples to the most recent.  
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7.3.2 Simpson’s Index  

Simpsonʼs index (D) is a measure of diversity dependent on evenness and dominance 

(Simpson, 1949). Simply, it is based upon the probability that any two individuals 

drawn at random from an infinitely large community belong to the same species. The 

value D may range from 0 to 1, with zero representing infinite diversity and 1, no diver-

sity. Therefore, larger D values denote lower diversities. D may also be subtracted from 

1 to give a positive correlation where the value of D increases with increasing diversity. 

For our purposes, we calculate the Simpson’s index based on the number of genera 

present, as well as the abundance of each genera within a sample:    

                                   

                            (Equation 7.)         
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Fig. 7.11 Shows the Berger-Parker index plotted for all ten samples (down core to 
core top), showing a decrease in dominance through time.

D =
X ni(ni � 1)

N(N � 1)



Where ni is the total number of organisms of a particular genera, and N is the total 

number of organisms of all genera. The Simpson’s index, D, is plotted for all 10 samples 

in figure 7.12.  

Here a general decrease in diversity (shown by an increase in the Simpson’s index, D) 

over time can be seen from the oldest samples to the most recent.  

7.3.3 Shannon-Wiener Diversity Index 

Shannon's index (H) is a measure of diversity and accounts for both abundance and 

evenness of the species present (Shannon, 1948). Typical H values are generally between 

1.5 and 3.5 in most ecological studies (the index is rarely greater than 4). H increases as 

both the richness and the evenness of the community increase. For our purposes we cal-
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Fig. 7.12 Shows the Simpson’s index plotted for all ten samples (down core to 
core top), showing a decrease in diversity through time.



culate Shannon’s index based on the proportion of genera i relative to the total number 

of genera (pi):               

                   

 (Equation 8.) 

Where the proportion of genera i relative to the total number of genera (pi) is calculat-

ed, and then multiplied by the natural logarithm of this proportion (lnpi). The resulting 

product is summed across genera, and multiplied by -1. Shannon’s index, H, is plotted 

for all 10 samples in figure 7.13. Here a general decrease in diversity (shown by an de-

crease in Shannon’s index, H) over time can be seen from the oldest samples to the most 

recent.  

The decrease in diversity over time seen in both the Simpson’s and Shannon’s index over 

time suggest that there has been an increase in environmental stress of some kind (Mur-
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Fig. 7.13 Shows the Shannon’s index plotted for all ten samples (down 
core to core top), showing a decrease in diversity through time.



ray, 1991). The low R2 values also indicate that many different variables (environmental 

factors) effect diversity.  

7.4 Ecological descriptions of genera  

Ecological studies aim to uncover the relationship between living organisms and their 

environment. This section describes the general ecological preferences of the studied 

genera. Note that a more specific ecologic characterization would involve identification 

down to the species level.  

Bolivina sp. Bolivinas are a low-oxygen tolerant infaunal foraminifer. They tend to dwell 

in shallow to intermediate continental shelf sediment and are indicative of high biopro-

ductivity (Ovsepyan et al., 2013). In this study, Bolivina sp. is a rare genus with only 

three specimens occurring in the studied core; one specimen in the 7-7.5 cm assemblage; 

one specimen in the 5-5.5 cm assemblage; and one specimen in the 1-1.5 cm assemblage 

(Figure 7.14). Due to its rarity and failure to exhibit a trend, no conclusions can be 

made about its occurrence and ecological relationships. 

Fig. 7.14 Shows abundance (by # of specimens) of Bolivina sp. through time (from core bottom to core top).  

Buccella sp. In Arctic and subarctic environments, Buccella sp. have been linked to an 

increased freshwater supply, a preference towards river and glacially-affected areas 

(Polyak, 2002; Möller et al., 2006). Buccella sp. have also been shown to prefer seasonal-
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ly ice free areas and are linked to high food and nutrient supply (Möller et al., 2006). 

Buccella’s live infaunally within the sediment (Murray, 1991). Buccella sp. is an abun-

dant genus in the studied samples. The number of Buccellas in the core generally in-

crease through time with the largest abundance close to the core top in the 1-1.5 cm as-

semblage (Figure 7.15). This increase may indicate an increase in freshwater discharge 

from the Greenland Ice Sheet through marine outlet glaciers and an increase in primary 

production due to the reduction in sea-ice extent as well as a longer ice-free summer sea-

son.   

Fig. 7.15 Shows abundance (by # of specimens) of Buccella sp. through time (from core bottom to core top).  

Cassidulina sp. Cassidulinas are common calcareous foraminifers on Arctic shelves, oc-

curring from glaciated fjords to bathyal depths. Cassidulinas are epifaunal forms and 

suggest relatively deep waters (433-510 m). They are abundant in reduced glacially im-

pacted environments (Korsun and Hald, 1998). Cassidulinas infer a decreased meltwater 

flux, and prefer higher salinity waters (Möller et al., 2006). Cassidulina reniforme has 

maximum abundance in intermediate zones (between river-proximal and river-distal ar-

eas). They prefer relatively cold-water areas (temperatures below 28℃) with seasonal 

sea-ice coverage (Polyak, 2002). The occurrence of Cassidulina sp. increases with nutri-

ent enrichment reflected in phytoplankton abundance (Korsun and Hald, 1998). Cas-

sidulinas are a common genus in the studied core and become abundant in the 4-4.5 cm 

assemblage (figure 7.16). Their low abundance in the upper core (especially in the 1-1.5 
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cm assemblage) may indicate a shift to glacially impacted environment, and hence an 

increase in meltwater flux and lower salinity waters.  

"  
Fig. 7.16 Shows abundance (by # of specimens) of Cassidulina sp. through time (from core bottom to core top). 

Cibicides sp. Cibicides, a plano-convex foraminifer, thrive in water depths < 1,000 me-

ters. Cibicides are an epifaunal, cosmopolitan species which feeds on laterally advected 

organic material, sometimes at an elevated position (suspension feeder) (Lutze and 

Thiel, 1989; Schäfer and Ritzrau, 2012). Cibicides may show a high variability of test 

morphology resulting from the irregularity of the substrate. Abnormal specimens of this 

genus thus cannot be used to indicate environmental stress (Geslin, 2000). Cibicides is 

well adapted to filter feeding and requires permanent lateral advective horizontal cur-

rents at the seafloor, and therefore, high velocity currents (Polyak, 2002).  Furthermore, 

a strong inflow of Atlantic surface water indicating more oceanic heat pumping into 

subarctic latitudes, provide suitable conditions for Cibicides (Streeter et al., 1982; Haake 

and Pflaumann 1989; Struck, 1997; Schäfer and Ritzrau, 2012). Additionally, the occur-

rence of Cibicides was found to be extremely low during the Last Glacial Maximum 

(LGM) (Struck, 1995). Cibicides is an abundant genera in the lower portion of the core 

and subsequently begins to decrease at 6-6.5 cm to 1-1.5 cm, and then finally increase 

once again in the 0-0.5 assemblage (core top) (figure 7.17). The fluctuation in abundance 

of Cibicides throughout the core may indicate changes in the inflow of Atlantic surface 

waters or a change in current velocities in the vicinity of the core. It should also be not-

ed that according to the Cesium-137 dating, it is possible that the 0-0.5 assemblage was 

deposited in a different manner than the rest of the core. Alternatively, another possibil-
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ity is that the decrease in abundance, (from 6-6.5 to 1-1.5 cm, which have been dated to 

> 100 years old, and estimated to be between 1570-1946) correspond to the Little Ice 

Age (LIA), a period of regionally cool conditions in the Northern Hemisphere between 

roughly AD 1300 and 1850. The  coldest conditions of the LIA are estimated to lie be-

tween AD 1570 and 1730. This hypothesis corresponds to a weakening convection of the 

ocean during the LIA, and consequently, a reduction in northward ocean heat transport, 

reinforcing the expansion of the sea ice and the cooling of the Northern Hemisphere of 

about 0.6° C during the 15th-19th centuries (Mann, 1990; Lehner et al., 2013), as well as 

a reduction in the production of NADW. This timeline would also explain the peak in 

the above Cassidulina sp. at 4-4.5 cm which infer a decreased meltwater flux, and higher 

salinity waters which correspond to cooler periods. Correspondingly, the higher abun-

dance of Cibicides at the core bottom may be explained by the previous Medieval Warm 

Period (MWP), a time of warm climate in the North Atlantic region from about AD 950 

to 1250. The MWP is often associated with enhanced North Atlantic Ocean circulation 

(Dowsett et al., 1992). Therefore, the abrupt and significant change in the abundance of 

Cibicides may indicate a shift in climate from the MWP to the LIA. In this scenario, the 

core top, dating to more recent than 1954, could indicate a warming and restrengthening 

of ocean convection and northward ocean heat transport, and accordingly, an increase in 

the abundance of Cibicides. Bradley and Jonest, 1993 found that unusually warm condi-

tions have prevailed since the 1920s, probably due to a relative absence of major explo-

sive volcanic eruptions and higher levels of greenhouse gases.  

"  
Fig. 7.17 Shows abundance (by # of specimens) of Cibicides sp. through time (from core bottom to core top). 
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Elphidium sp. Elphidiums are known to be widespread on the Arctic shelves and are 

known to live in various highly stressed environments. The ability of Elphidiums to 

adapt to harsh environments may be related to its high nutritional and habitat versatili-

ty (Lutze, 1965; Korsun and Hald, 2000). Elphidiums may live at the seafloor or in with-

in the sediment, and can be termed semi-infaunal. In general Elphidiums are character-

istic of polar climate, glacier-proximal (near glacier/glacier influenced), shallow water 

(shelf environments) (Polyak, 2002; Howe, 2010). They show a preference for low-salinity 

environments, and are an indicator of meltwater and freshwater influx, presumably from 

melting glaciers (Howe, 2010; Bauch et al., 2004). Jennings et al., 2002 postulate that  

the rise in Elphidiums throughout the late Holocene provides independent evidence of an 

overall freshening of Arctic waters. Numbers of living Elphidiums have been shown to 

exhibit a positive correlation with organic carbon content and phytoplankton density 

(Korsun and Hald, 1998). Additionally, Elphidiums are thought to be very opportunistic, 

which often takes advantage of environments unfavorable for most other shelf genera 

(Nagy, 1965). Elphidium is an abundant genera in the studied core (figure 7.18). The 

abundance of Elphidium remains somewhat consistent from the 9-9.5  to the 4-4.5 cm 

assemblage, with the 4-4.5 cm assemblage representing its lowest relative abundance at 

33 specimens. Thereafter, the relative abundance jumps to its highest at 98 specimens in 

the 3-3.5 cm assemblage and remains high (although a general decreasing trend can be 

seen to the core top). This increase from the 4-4.5 cm assemblage may indicate a fresh-

ening of the water due to glacial inundation.  

"  
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Fig. 7.18 Shows abundance (by # of specimens) of Elphidium  sp. through time (from core bottom to core top). 

Fissurina sp. Fissurina is typically a deep-water infaunal genus (Murray, 1991). There is 

limited literature on Fissurinas general ecology. Fissurina sp. is not an abundant genera 

in this study and no conclusions can be made about its occurrence or ecological relation-

ships (figure 7.19).  

"  
Fig. 7.19 Shows abundance (by # of specimens) of Fissurina  sp. through time (from core bottom to core top). 

Haynesina sp. Haynesinas tend to prefer low-salinity, shallow waters (<50 meters) and 

are indicative of meltwater outflow, and deglacial or end of glaciation periods (Weddle 

and Retelle, 2001; Korsun, 1999; Korsun and Hald, 2000; Polyak et al., 2002). Haynesina 

sp. are usually referred to as infaunal genus (Murray, 1991).  They can be found in river-

proximal environments in the Kara and Laptev Seas (Polyak et al., 2002) and are also 

indicators of increased depositional energy (Möller et al., 2006). Haynesina is a common 

genus in the studied core. A general increase in the abundance of Haynesina can be seen 

from core bottom to core top, indicating increased meltwater outflow and a deglacial pe-

riod. These trends (especially the lower abundances in the core bottom) do not align 

well with the MWP and LIA timeline. However, since this genera prefers very shallow 

waters (of less than 50 meters) and our core has a 447 meter depth, it is possible that 

these specimens were deposited when already dead by bottom currents (called ghost 

communities).  Therefore the ecological implications of this genera should be disregarded 

(figure 7.20).  
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"  
Fig. 7.20 Shows abundance (by # of specimens) of Haynesina  sp. through time (from core bottom to core top). 

Hoeglundina sp. Hoeglundina is a shallow infaunal foraminifer found in the highest 

abundances between a depth of 550 - 860 meters (Llano and Schmitt, 1967). They are 

an oxygen indicator and are typical of suboxic conditions (Kaiho, 1994). In addition, 

they show affinities to moderate (mesotrophic) to high (eutrophic) nutrient conditions 

(Schönfeld, 2001). Hoeglundina is a common genus found in the studied core. The abun-

dance of Hoeglundina remains relatively consistent throughout the core, however, a no-

table decrease in specimen number can be seen between the 6-6.5 cm and the 2-2.5 cm 

assemblage (figure 7.21). This decrease in abundance may indicate low nutrient condi-

tions, and higher dissolved oxygen content, which generally occur during cooler periods.  

"  
Fig. 7.21 Shows abundance (by # of specimens) of Hoeglundina sp. through time (from core bottom to core top). 

Lagena sp. Lagena is an infaunal foraminifer (Murray, 1991). There is limited literature 

on Lagena’s general ecology.  Lagena sp. is not an abundant genus in this study (figure 

7.22) and no conclusions can be made about its occurrence or ecological relationships. 
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"  
Fig. 7.22 Shows abundance (by # of specimens) of Lagena sp. through time (from core bottom to core top). 

Melonis sp. The Melonis is an infaunal genus which feeds on buried organic detritus, 

and a typical open-sea form (Korsun and Hald, 1998). They have also been found to be 

common in seafloor depressions of the open Barents-Kara shelf, as well as on the conti-

nental slopes (Polyak, 2002). This genus tends to avoid areas with reduced bottom-water 

salinities, and are associated with normal salinity waters. Melonis are typically found in 

areas with absent or seasonal ice cover (Polyak, 2002). Melonis is a common genus in the 

studied core (figure 7.23). The highest abundances can be seen between the 5-5.5 and 3-

3.5 cm assemblages. This may indicate normal salinity waters during this time (e.g.. wa-

ter that are not influenced by freshwater input).  

"  
Fig. 7.23 Shows abundance (by # of specimens) of Melonis  sp. through time (from core bottom to core top). 

Nonionellina sp. Nonionellinas show a preference for fresh phytodetritus as a food 

source (Cedhagen, 1991), and live an infaunal life mode (Corliss, 1991; Corliss and Van 

Weering, 1993; Hunt and Corliss, 1993). This genus is best adapted to glacial-distal en-
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vironments with seasonal productivity (seasonally ice free areas) (Polyak, 2002). Non-

ionellina is a rare genus in the studied core and only three specimens were collected. One 

specimen was found in each; the 9-9.5 cm, 3-3.5 cm; and 0-0.5 cm assemblage. The low 

abundance of this genus may be due to the preference for areas uninfluenced by glaciers. 

Due to the lack of specimens, no conclusions can be made about its occurrence or eco-

logical relationships (figure 7.24).  

"  
Fig. 7.24 Shows abundance (by # of specimens) of Nonionellina  sp. through time (from core bottom to core top). 

Oolina sp. Oolina is an infaunal foraminifer (Murray, 1991). There is limited literature 

on Oolina’s general ecology. Oolina is a rare genus in this study. Specimens occur in the 

bottom and top of the core indicating that the top and bottom core environment may 

have been somewhat preferable to this genus and that these environments may have 

been similar. The genus is absent from 6-6.5 to 3-3.5 cm indicating that the environment 

was not congenial during this time (figure 7.25).  

"  
Fig. 7.25 Shows abundance (by # of specimens) of Oolina sp. through time (from core bottom to core top). 
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Pullenia sp.  Pullenias are a shallow, infaunal taxa (Murray, 1991), and are a character-

istic genus of the upper continental slope. This genus is associated with high fluxes of 

organic carbon and seasonally ice free areas (Mackensen et. al., 1985). The Pullenia 

genus is rare in the studied core. The abundance of this genus shows no clear trend and 

therefore no conclusions can be made about its occurrence or ecological relationships 

(figure 7.26).  

"  
Fig. 7.26 Shows abundance (by # of specimens) of Pullenia sp. through time (from core bottom to core top). 

Trifarina sp.  Trifarinas prefer higher salinity waters (Möller et al., 2006). The occur-

rence a few specimens of Trifarina may indicate the influence of Atlantic water and is 

today found in the region influenced by Atlantic water off the coast of northwestern 

Norway (Hald and Steinsund, 1992; Möller et al., 2006). In the Barents Sea and on the 

Iceland shelf, this genus is abundant at relatively shallow water depths and in environ-

ments characterized by high seasonal biological productivity (Polyak, 2002). This genus 

is rare in the studied core. Although a general decreasing trend exists from the core bot-

tom to core top, the lack of specimens does not allow for any conclusion regarding this 

genus to be made (figure 7.27).  
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"  
Fig. 7.27 Shows abundance (by # of specimens) of Trifarina sp. through time (from core bottom to core top). 

Triloculina sp. Triloculinas are an epifaunal, deposit feeding foraminifer that are adapt-

ed to low fluxes of organic carbon (Murray, 1991). The Triloculina genus is rare in the 

studied core. There are a total of three specimens throughout, one in each of the follow-

ing assemblages; 9-9.5 cm, 6-6.5 cm; and 4-4.5 cm. Due to the lack of specimens, no con-

clusion regarding this genus can be made (figure 7.28).  

"  
Fig. 7.28 Shows abundance (by # of specimens) of Triloculina sp. through time (from core bottom to core top). 

Quinqueloculina sp. Quinqueloculina is an epifaunal genus (Murray, 1991), found in 

glacial marine environments (Korsun and Hald, 2000). No clear pattern can be recog-

nized in the distribution of this genus possibly because of a combination of several indi-

vidual ecological preferences; however, Quinqueloculina are typically found in shallow 

water (less than 50 meters) but are not excluded from a deeper habitat (Green, 1960). 

Quinqueloculina is the rarest genus, with only one specimen found throughout the core, 

occurring in the 2-2.5 assemblage. Due to the lack of specimens, no conclusion regarding 
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this genus can be made. However, the low number of specimens is expected due to the 

fact that the water depth of the studied core is 447 meters (figure 7.29).   

"  
Fig. 7.29 Shows abundance (by # of specimens) of Quinqueloculina sp. through time (from core bottom to core top). 

8. Implications and conclusion 

8.1 Foraminiferal assemblages and environmental change 

The most abundant genera (Cibicides, Elphidium, and Buccella) show considerable vari-

ability and trends over the core and therefore exhibit the greatest potential for the infer-

ence of environmental change.  

Cibicides: As stated above, Cibicides rely on strong bottom currents causing the lateral 

advection of food supply, which make ideal living conditions for epibenthic living sus-

pension feeders. Cibicides are also known to thrive in high stress environments and the 

high stress environment of this area may explain the dominance of specific genera. An 

increase in the level of environmental stress is generally considered to decrease species 

diversity, richness, and evenness. Furthermore, the Intermediate Disturbance Hypothesis 

suggests that maximum diversity occurs at intermediate levels of disturbance and de-

creases again at high levels of stress (as species are eliminated) (Lorenz, 2005). In gener-

al, Schonfeld, 2002 found that epifaunal species make up as much as 60% of assemblages 

at sites with high-current velocities and between 3-18% in areas with slower current ve-

locities. The studied assemblages show a wide range of variation in percentage of epifau-
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nal genera (Figures 8.1a and 8.1b). In general, a high percentage of epifaunal genera are 

seen in samples 1-4, inferring higher current velocities during this period. Subsequently 

the percent of epifaunal genera begins to decline, reaching the lowest point at assem-

blage 9, deducing weakening current velocities. Finally, from assemblage 9 to 10, the 

percent of epifaunal genera begins to increase, once again inferring a restrengthening in 

current velocity.  

" "  
Fig 8.1a and 8.1b. Figure 8.1aa shows epifaunal and infaunal genera by # of specimens in each assemblage from 
down core to core top. Figure 8.1b shows the percentage of epifaunal specimens (moving average) found in each 
assemblage from down core to core top. Note that the semi-infaunal genera, Elphidium was not included due to its 

inconsistent mode of life.  

During past glacials, as well as cooling periods, such as the LIA, current velocities are 

thought to have become weak(er) in the southern Denmark Strait. This slowdown would 

lead to the sedimentation of food particles rather than the lateral advection of food 

through higher velocity currents. Accordingly, during cooler periods, this region is more 

suitable for substrate than for suspension feeders (Lorenz, 2005). This trend is especially 

seen through the negative correlation in abundances of Cibicides and Elphidium/Buccel-

la through the core (figure 8.2).  

"48



Fig. 8.2 Shows the relative abundance of the three abundant genera through time. A negative correlation in abun-

dances of Cibicides vs. Elphidium/Buccella is seen, while a positive correlation between the abundance of Elphidi-
um and Buccella is seen. (The correlation coefficient between Elphidium and Buccella is, r = 0.53, Buccella and 
Cibicides show a negative correlation of r = -0.77, and Elphidium and Cibicides show a negative correlation of r = -

0.80). 

The variability in the abundance of Cibicides throughout the core may indicate changes 

in current velocity over time, specifically the inflow of Atlantic surface waters and its 

impact on the formation of North Atlantic deep water. The core bottom (from 9-9.5 cm 

to 6-6.5 cm), where the highest abundances of Cibicides sp. are seen may indicate a pe-

riod where current velocities were higher, due to increased inflow of Atlantic surface wa-

ters leading to high current velocities moving southward through the Denmark Strait. 

As stated above it is possible that this portion of the core coincides with the end of the 

Medieval Warm Period (MWP), which is associated with enhanced North Atlantic 

Ocean circulation. Subsequently, the abundance of Cibicides begins to decline rapidly 

(from 6-6.5 cm), indicating a slowing of current velocities, possibly due to meltwater in-

flux from the MWP (as seen by the increasing abundance in Elphidium/Buccella). The 

low abundance assemblages from 5-5.5 cm to 1-1.5 cm indicate this area was not ideal 

for Cibicides during these periods. This indicates a transition into a colder period in 

which current velocities were low, an environment more preferable for substrate feeders. 

Cibicides is no longer the dominant genera during this interval and both Buccella sp. 
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and Elphidium sp. begin to increase in number during this interval. Both Buccella and 

Elphidium are infaunal substrate feeders. As stated above, it is possible that the lower 

abundance assemblages correspond to the the Little Ice Age (LIA) and a weakening of 

the convection of the ocean caused by a reduction in northward ocean heat transport. 

This may also explain the peak in abundance of Cassidulina sp. at 4-4.5 cm which infer 

a decreased meltwater flux, and higher salinity waters which correspond to cooler peri-

ods. The core top (0-0.5 cm) which is recent (estimated to be between 1954 and 1986), 

shows an increase in the abundance of Cibicides which can be interpreted a restrength-

ening of ocean convection and northward ocean heat transport in relation to the LIA.  

The variability in abundance of Cibicides may also be related to the North Atlantic Os-

cillation (NAO) index and its impact on region. The North Atlantic Oscillation (NAO) 

is a recurrent pattern of atmospheric variability in the North Atlantic. Furthermore, the 

NAO is thought to strongly influence the deep and intermediate water formation in the 

North Atlantic (Dickson et al., 1996; Holfort and Albrecht, 2007). A positive NAO phase 

(high NAO index) indicates a larger pressure gradient and stronger wind stress over the 

North Atlantic, lower salinity Atlantic waters entering the Nordic seas, and therefore a 

decrease in subsurface salinity in the Nordic Seas (Dickson et al., 2003). Additionally, 

Blindheim et al., 2000 found that the inflow of Atlantic water in the Nordic Seas 

through the Faroe-Shetland Channel increases for positive NAO trends, yet, a suppres-

sion of strong deep water production in the Greenland Sea was also seen. Even so, a 

strong connection between the DSO and the NAO winter index is not obvious. Jochum-

sen et al., 2012 found that overflow transports above the mean sometimes coincide with 

positive NAO winter indices, while weaker transports always correspond to negative in-

dices. However, a negative NAO index does not necessarily infer low overflow transports. 

Therefore, more data and studies are needed to verify if and how the overflow transport 

is linked to the NAO (Jochumsen et al., 2012).  
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Elphidium and Buccella: Elphidium and Buccella show similar trends throughout the 

core,  having a correlation coefficient of r = 0.53. This may be due to their similar mode 

of life and feeding habits (semi-infaunal to infaunal substrate feeders). Both genera also 

thrive in river and glacier proximal environments, indicate meltwater influx, and are 

adapted to high variability in fluxes of food and sediment. Certain species within these 

genera may have supplementary apertures which are secondary openings in the test (in 

addition to the primary aperture) and allow for quick excretion and withdrawal of large 

volumes of cytoplasm for efficient capture and digestion of various food objects. The 

survival of these foraminifers may also be related to their increased mobility within the 

sediment that allows them to escape extreme freshening events by burrowing into the 

substrate (Brasier, 1995; Alexander and Banner, 1984; Polyak, 2002). Another impor-

tant note is the increase in test size seem in Elphidium in samples 7 and 8 (assemblages 

3-3.5 and 2-2.5 cm). During these periods the overall abundance of Elphidium is high 

further indicating that the environment was ideal for this genus. It had been shown that 

growth rates and test size are influenced by temperature, salinity, and food supply 

(Bradshaw, 1961), and may also correlate with oxygen content (Kaiho, 1994). Corre-

spondingly, a reduced test size has been shown to occur in stressed environments (Coc-

cioni, 2000; Geslin et al. 2000). 

In order to verify the connection between foraminiferal assemblages seen in this study 

and inferred environmental change, another aging method (such as radiocarbon dating)  

must be used in order to further narrow down the time frame of the sediments. In addi-

tion, it would be beneficial to look at multiple other cores in the region to compare the 

trends seen in foraminiferal assemblages.  

8.2 Assemblage Analysis 

The analysis of foraminiferal assemblages are based on the quantitative and qualitative 

analysis of communities within each sample. As stated earlier, each species of foraminifer 

"51



has certain environmental preferences. By summarizing the preferences of each genus, it 

is possible to define an ecological window for the considered characteristic. However, it is 

important to note that ecological preferences are inferred from empirical data on living 

specimens and thus this study assumes that the studied taxa preferred the same or 

equivalent environments in the past. Although, community change can only be estab-

lished through controlled experiments, inferences may be drawn from relationships be-

tween assemblage patterns and environmental conditions. Additionally, in this study, in 

order to note changes in the environment, ten discrete samples were analyzed over one 

profile for faunal distributions to put these ecological factors in temporal context. In or-

der to put these factors in spatial context more cores in the region would need to be an-

alyzed. It is also important to note that a potential issue in assemblage analysis is the 

difficult distinction between seasonal natural variability and environmental change. An-

other factor that may lead to a misinterpretation of the environment is the influx and 

redeposition of already dead foraminifera (called ghost-communities). Even though the 

velocity of bottom currents are much higher in the southern portion of the Denmark 

Strait as compared with the northern areas, a portion of the foraminifera identified in 

the studied core may have been transported there passively as already dead individuals 

by bottom currents. However, some genera are able to resist high current velocities by 

attaching themselves to substrate, via burial, or by burrowing (Alve, 1999; Lorenz, 

2005). Lastly, the univariate (single variable) methods used to evaluate diversity are 

helpful for a first approach in comparing faunal assemblages. However, they are based on 

particular genus identities, and therefore two samples could have the same diversity, but 

without having any genera in common (Lorenz, 2005). Therefore, multivariate methods 

of quantitative analysis may be helpful in further analysis of the faunal assemblages.  

8.3 Future implications 

Due to anthropogenic climate change, the arctic and subarctic regions are undergoing 

rapid changes. These changes include warming of the ocean and atmosphere, a decline in 
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sea ice extent (Serreze, Holland and Stroeve, 2007), an increase in the length of the sea 

ice free season, and increased mass loss from the Greenland ice sheet (Arctic.noaa.gov, 

2015). Furthermore, global climate models (GCMs) postulate that this region will expe-

rience the strongest temperature increases in the future due to polar amplification 

(IPCC, 2007). The future development of the Arctic will have significant effects both on 

oceanic circulation and climate (Cattle and Crossley, 1995). More studies are needed in 

order to better predict this future behavior, including paleoenvironmental investigations 

that yield improved insight into past climate variability and the evolution of the arctic 

climate system. Hence, more knowledge of how polar foraminiferal assemblages respond-

ed to past climate variability is of great importance in predicting future changes. 

Foraminiferal assemblages may reflect the current changes in meltwater discharge from 

glacial and riverine input, as well as fluxes in salinity. A warming Arctic region results in 

more meltwater discharge and, as a result, the fauna may become ‘more glacially-influ-

enced.’ This may be seen in foraminiferal assemblages as a decline in taxa preferring 

glacial-distal environment and an increase in taxa preferring a glacial-proximal environ-

ment. The impact on salinity is particularly strong on the shelves where large amounts 

of fresh water are discharged each summer from deglacial and riverine sources (Bauch et 

al., 2004). Applying this conclusion to present and future foraminiferal assemblages, a 

transition from an ice distal to an ice proximal foraminiferal assemblage may be seen, 

reflecting the increased meltwater production and an unstable ice front (Korson, 2000).  

Low salinity surface waters exported from the Arctic Ocean, as well as freshwater influx 

from the GIS will also have an effect on the formation of North Atlantic Deep Water 

which ventilates the World Ocean (Aagard and Carmack, 1994; Polyak, 2002). Arctic 

riverine and glacial inputs play a critical role not only in high latitude systems, but also 

the climatic system through controls on sea-ice coverage and water mass exchange 

(Driscoll and Haug, 1998; Polyak, 2002). Recent studies have shown that the density of 
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the DSO has diminished by about 0.02 percent over the past 40 years due to a 0.035 

salinity decrease (Dickson et al.  2002). This freshening may be seen through changes in 

foraminiferal assemblages. Additionally, due to warming in the Arctic, the sea-ice melt 

season is also lengthening at both ends, with an earlier melt onset in the Spring and a 

later freeze-up in the Fall. The predominant phenomenon extending the melting is the 

later start of the freeze season. This in turn, affects the amount of solar radiation ab-

sorbed by the ocean, as well as rates of primary productivity, which has direct effects on 

benthic foraminiferal communities. By understanding how foraminiferal assemblages 

have reacted to a warming climate in the past, we may be able to better predict the fu-

ture by looking at current assemblages.  

8.4 Conclusion and future work 

Three thousand calcareous foraminifera were identified and quantified in ten discrete 

samples from 0-9.5 cm of a sediment core from the Denmark Strait region. The utility of 

faunal abundance and variability were assessed as indicators of climate fluctuations in 

the region.  It is clear that the abundant genera of the studied core have shown signifi-

cant variability in abundance through time. The variability in Cibicides, Elphidium, and 

Buccella, provides evidence for a change from a warmer climate with stronger current 

velocities and meltwater influx (likely the Medieval Warm Periods) to a cooler climate 

(most likely the Little Ice age) with slower current velocities and less meltwater influx, 

and finally to our present day situation in which the climate is warming due to anthro-

pogenic impacts. In order to verify the connection between the variability in 

foraminiferal assemblages seen in this study and inferred environmental change, the fol-

lowing is needed (1) another aging method (such as radiocarbon dating) must be used in 

order to further narrow down the time frame in which the sediments were deposited, (2) 

a further investigation of multiple other cores in the region to compare the foraminiferal 

assemblages and trends seen over a comparable time frame, and lastly, (3) foraminifera 

could be identified down to the species level in order to further specify ecological charac-
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terization. Although more work needs to be done, it is clear that benthic foraminifera 

respond to changing climate conditions and are valuable proxies for environmental 

change in the Denmark Strait region.  

8.5 Study in context 

Much has been explored on the ecology and application of benthic foraminifera. Howev-

er, to our knowledge, there have been limited ecological studies of benthic foraminifera 

in the high latitudes. More studies are needed in order to link high latitude assemblages 

to specific environments and environmental change especially through the Holocene. 

This section will briefly summarize selected studies in an attempt to put our study in 

context and to highlight its potential contribution.  

Lorenz (2005) looked at and compared modern faunal assemblages of living and dead 

benthic foraminifera north and south of the Denmark Strait between a 980 and 2,564 

meter water depth. Similarly to our study, Lorenz found high abundances of calcareous 

foraminifera south of the sill, due to strong bottom currents and low carbonate dissolu-

tion rates. In addition, mainly agglutinated species were found north of the sill because 

of week bottom currents and higher carbonate dissolution rates. Again in agreement 

with our study, southern cores showed a large portion of epifaunal species living as sus-

pension feeders, indicating the lateral advection of food particles. In contrast, substrate 

feeders dominated in the northern stations where current velocities are slower and sedi-

mentation of food particles occurs. Therefore, it would be beneficial to further explore 

the role of current velocities in dictating foraminiferal assemblages and diversity in this 

region.  

Seasonal dynamics of modern polar benthic foraminifera have also been studied. For ex-

ample, Korson (2000) found that foraminiferal faunas were more diverse in winter and 

that the decrease in diversity during summer melting may be explained by a seasonal 
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rise in sedimentation causing ecological stress. Correspondingly, this study also found a 

clear distinction between glacial proximal and glacial distal species.  

In addition to modern studies, paleoclimate investigations carried out on benthic, cal-

careous foraminifera have also lead to interesting and significant findings. Benthic 

foraminifera found in sediment cores from the Nordic seas have shown glacial to inter-

glacial contrasts in studied assemblages (Schäfer et al., 2012; Kellogg, 1977; Streeter et 

al., 1982), as well as the ability to reflect surface ocean productivity. Additionally, the 

total abundance of benthic foraminifera has been shown to be substantially reduced dur-

ing glacial periods in comparison with interglacials (Struck, 1997). Furthermore, benthic 

foraminifera from the Arctic and subarctic regions have shown high preservation poten-

tial, which makes them optimal for paleoclimate research. Planktonic foraminifera have 

also been used to study changes in both the physical and chemical characteristics of the 

ocean. 

Although many previous studies have looked at both modern and past benthic 

foraminifera in an attempt to link assemblages to specific environments and environmen-

tal change, more work needs to be done, as benthic foraminifera have great potential in 

helping to predict future change, especially in the Arctic and subarctic regions.  
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Appendix  

Table A.1 Preliminary core and sample data including the sample number and name, the given In-
ternational GeoSample Number (ISGN), sample intervals (minimum and maximum depth in core), the 
parent core ISGN, the sample size, wet weight, and collection date. Note: The IGSN or International 
GeoSample Number is a 9-character alphanumeric code that is assigned to samples in order to ensure 
their unique identification and unambiguous referencing of data generated by the study of samples. 

Sample # Sample  

Name

Sample  

IGSN

Depth in 

Core Min 

(cm)

Depth in 

Core 

Max (cm)

Parent IGSN Size 

(cc)

Wet 

Weight 

(grams)

Collection 

date

10 KN158-4-67GC_0cm DSR000DKE 0 0.5 DSR00031B 10 14.16 2015-10-06

9 KN158-4-67GC_1cm DSR000DKF 1 1.5 DSR00031B 10 11.66 2015-10-06

8 KN158-4-67GC_2cm DSR000DK

G

2 2.5 DSR00031B 10 16.40 2015-10-06

7 KN158-4-67GC_3cm DSR000DKH 3 3.5 DSR00031B 10 9/01 2015-10-06

6 KN158-4-67GC_4cm DSR000DKI 4 4.5 DSR00031B 10 11.70 2015-10-06

5 KN158-4-67GC_5cm DSR000DKJ 5 5.5 DSR00031B 10 9.00 2015-10-06

4 KN158-4-67GC_6cm DSR000DKK 6 6.5 DSR00031B 10 11.98 2015-10-06

3 KN158-4-67GC_7cm DSR000DKL 7 7.5 DSR00031B 10 12.92 2015-10-06

2 KN158-4-67GC_8cm DSR000DK

M

8 8.5 DSR00031B 10 11.70 2015-10-06

1 KN158-4-67GC_9cm DSR000DKN 9 9.5 DSR00031B 10 14.51 2015-10-06
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Table A.2 Shows laboratory results of measured 210Pb. The average 210Pb total is 0.015 Bq/g and the 
standard deviation is 0.007. Note: One becquerel is defined as the activity of a quantity of radioactive ma-
terial in which one nucleus decays per second. 

Table A.3 Shows laboratory results of measured 137Cs.  

no decay collect

sample # cm down core

210 Pb total (Bq/

g) +/- 210Pb^ex (Bq/g) +/-

10 0 - 0.5 0.107 0.007 0.138 0.007

8 2 - 2.5 0.024 0.004 0.005   0.004 

6 4 - 4.5 0.009 0.003 -0.014   0.003 

4 6 - 6.5 0.010 0.003 -0.012 0.003

2 8 - 8.5 0.018 0.003 0.004 0.003

Collect

sample # 

cm down 

core 137 Cs total (Bq/gm) % error

10 0 - 0.5 0.0007 6.48

8 2 - 2.5 not detectable —

6 4 - 4.5 not detectable —

4 6 - 6.5 not detectable —

2 8 - 8.5 not detectable —
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Fig. A.1 Sediment core, KN158-4-67GC before sam-
pling. Samples were taken in discreet 1.0 cm intervals 
from 0-10 cm. 
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Table A.4 Sample #1: 9-9.5 cm

AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus

105626 1 Cibicides sp. 105627 1 Cibicides sp. 105628 1 Buccella sp. 105629 1 Melonis sp. 105630 1 Haynesina sp. 

2 Cibicides sp. 2 Cibicides sp. 2 Buccella sp. 2 Melonis sp. 2 Melonis sp.

3 Cibicides sp. 3 Cibicides sp. 3 Buccella sp. 3 Melonis sp. 3 Elphidium sp.

4 Cibicides sp. 4 Cibicides sp. 4 Buccella sp. 4 Melonis sp. 4 Haynesina sp. 

5 Cibicides sp. 5 Cibicides sp. 5 Buccella sp. 5 Melonis sp. 5 Elphidium sp.

6 Cibicides sp. 6 Cibicides sp. 6 Buccella sp. 6 Melonis sp. 6 Elphidium sp.

7 Cibicides sp. 7 Cibicides sp. 7 Buccella sp. 7 Melonis sp. 7 Elphidium sp.

8 Cibicides sp. 8 Cibicides sp. 8 Buccella sp. 8 Melonis sp. 8 Elphidium sp.

9 Cibicides sp. 9 Cibicides sp. 9 Buccella sp. 9 Melonis sp. 9 Elphidium sp.

10 Cibicides sp. 10 Cibicides sp. 10 Buccella sp. 10 Melonis sp. 10 Haynesina sp. 

11 Cibicides sp. 11 Cibicides sp. 11 Buccella sp. 11 Melonis sp. 11 Haynesina sp. 

12 Cibicides sp. 12 Cibicides sp. 12 Buccella sp. 12 Melonis sp. 12 Elphidium sp.

13 Cibicides sp. 13 Cibicides sp. 13 Buccella sp. 13 Melonis sp. 13 Elphidium sp.

14 Cibicides sp. 14 Cibicides sp. 14 Buccella sp. 14 Melonis sp. 14 Elphidium sp.

15 Cibicides sp. 15 Cibicides sp. 15 Buccella sp. 15 Melonis sp. 15 Elphidium sp.

16 Cibicides sp. 16 Cibicides sp. 16 Buccella sp. 16 Haynesina sp. 16 Elphidium sp.

17 Cibicides sp. 17 Cibicides sp. 17 Buccella sp. 17 Haynesina sp. 17 Elphidium sp.

18 Cibicides sp. 18 Cibicides sp. 18 Hoeglundina sp. 18 Elphidium sp. 18 Elphidium sp.

19 Cibicides sp. 19 Cibicides sp. 19 Hoeglundina sp. 19 Haynesina sp. 19 Elphidium sp.

20 Cibicides sp. 20 Cibicides sp. 20 Hoeglundina sp. 20 Elphidium sp. 20 Haynesina sp. 

21 Cibicides sp. 21 Cibicides sp. 21 Hoeglundina sp. 21 Elphidium sp. 21 Elphidium sp.

22 Cibicides sp. 22 Cibicides sp. 22 Hoeglundina sp. 22 Elphidium sp. 22 Elphidium sp.

23 Cibicides sp. 23 Cibicides sp. 23 Hoeglundina sp. 23 Elphidium sp. 23 Triloculina sp.

24 Cibicides sp. 24 Cibicides sp. 24 Hoeglundina sp. 24 Elphidium sp. 24 Fissurina sp. 

25 Cibicides sp. 25 Cibicides sp. 25 Hoeglundina sp. 25 Elphidium sp. 25 Fissurina sp. 

26 Cibicides sp. 26 Cibicides sp. 26 Hoeglundina sp. 26 Elphidium sp. 26 Fissurina sp. 

27 Cibicides sp. 27 Cibicides sp. 27 Hoeglundina sp. 27 Elphidium sp. 27 Fissurina sp. 

28 Cibicides sp. 28 Cibicides sp. 28 Hoeglundina sp. 28 Elphidium sp. 28 Fissurina sp. 

29 Cibicides sp. 29 Cibicides sp. 29 Hoeglundina sp. 29 Elphidium sp. 29 Fissurina sp. 

30 Cibicides sp. 30 Cibicides sp. 30 Hoeglundina sp. 30 Elphidium sp. 30 Fissurina sp. 

31 Cibicides sp. 31 Cibicides sp. 31 Hoeglundina sp. 31 Haynesina sp. 31 Fissurina sp. 

32 Cibicides sp. 32 Cibicides sp. 32 Hoeglundina sp. 32 Elphidium sp. 32 Fissurina sp. 

33 Cibicides sp. 33 Cibicides sp. 33 Hoeglundina sp. 33 Elphidium sp. 33 Pullenia sp.

34 Cibicides sp. 34 Cibicides sp. 34 Hoeglundina sp. 34 Haynesina sp. 34 Pullenia sp.

35 Cibicides sp. 35 Cibicides sp. 35 Cassidulina sp. 35 Elphidium sp. 35 Pullenia sp.

36 Cibicides sp. 36 Cibicides sp. 36 Cassidulina sp. 36 Haynesina sp. 36 Pullenia sp.

37 Cibicides sp. 37 Cibicides sp. 37 Cassidulina sp. 37 Elphidium sp. 37 Nonionellina

38 Cibicides sp. 38 Cibicides sp. 38 Cassidulina sp. 38 Elphidium sp. 38 Trifarina sp. 

39 Cibicides sp. 39 Cibicides sp. 39 Cassidulina sp. 39 Elphidium sp. 39 Trifarina sp.

40 Cibicides sp. 40 Cibicides sp. 40 Cassidulina sp. 40 Elphidium sp. 40 Trifarina sp.

41 Cibicides sp. 41 Cibicides sp. 41 Cassidulina sp. 41 Elphidium sp. 41 Oolina sp.

42 Cibicides sp. 42 Cibicides sp. 42 Cassidulina sp. 42 Elphidium sp. 42 Oolina sp.

43 Cibicides sp. 43 Buccella sp. 43 Cassidulina sp. 43 Elphidium sp. 43 Oolina sp.

44 Cibicides sp. 44 Buccella sp. 44 Cassidulina sp. 44 Elphidium sp. 44 Oolina sp.

45 Cibicides sp. 45 Buccella sp. 45 Cassidulina sp. 45 Elphidium sp.

46 Cibicides sp. 46 Buccella sp. 46 Cassidulina sp. 46 Elphidium sp.

47 Cibicides sp. 47 Buccella sp. 47 Cassidulina sp. 47 Elphidium sp.

48 Cibicides sp. 48 Buccella sp. 48 Cassidulina sp. 48 Elphidium sp.

49 Cibicides sp. 49 Buccella sp. 49 Cassidulina sp. 49 Elphidium sp.

50 Cibicides sp. 50 Buccella sp. 50 Cassidulina sp. 50 Elphidium sp.

51 Cibicides sp. 51 Buccella sp. 51 Melonis sp. 51 Elphidium sp.

52 Cibicides sp. 52 Buccella sp. 52 Melonis sp. 52 Elphidium sp.

53 Cibicides sp. 53 Buccella sp. 53 Melonis sp. 53 Elphidium sp.

54 Cibicides sp. 54 Buccella sp. 54 Melonis sp. 54 Haynesina sp. 

55 Cibicides sp. 55 Buccella sp. 55 Melonis sp. 55 Elphidium sp.

56 Cibicides sp. 56 Buccella sp. 56 Melonis sp. 56 Elphidium sp.

57 Cibicides sp. 57 Buccella sp. 57 Melonis sp. 57 Haynesina sp. 

58 Cibicides sp. 58 Buccella sp. 58 Melonis sp. 58 Elphidium sp.

59 Cibicides sp. 59 Buccella sp. 59 Melonis sp. 59 Elphidium sp.

60 Cibicides sp. 60 Buccella sp. 60 Melonis sp. 60 Elphidium sp.

61 Cibicides sp. 61 Buccella sp. 61 Melonis sp. 61 Elphidium sp.

62 Cibicides sp. 62 Buccella sp. 62 Melonis sp. 62 Haynesina sp. 

63 Cibicides sp. 63 Buccella sp. 63 Melonis sp. 63 Haynesina sp. 

64 Cibicides sp. 64 Buccella sp. 64 Melonis sp. 64 Elphidium sp.
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Table A.5 Sample #2: 8-8.5 cm

AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus

105631 1 Cibicides sp. 105632 1 Cibicides sp. 105633 1 Cibicides sp. 105634 1 Cassidulina sp. 105635 1 Elphidium sp.

2 Cibicides sp. 2 Cibicides sp. 2 Cibicides sp. 2 Cassidulina sp. 2 Elphidium sp.

3 Cibicides sp. 3 Cibicides sp. 3 Cibicides sp. 3 Cassidulina sp. 3 Elphidium sp.

4 Cibicides sp. 4 Cibicides sp. 4 Cibicides sp. 4 Cassidulina sp. 4 Elphidium sp.

5 Cibicides sp. 5 Cibicides sp. 5 Buccella sp. 5 Cassidulina sp. 5 Elphidium sp.

6 Cibicides sp. 6 Cibicides sp. 6 Buccella sp. 6 Cassidulina sp. 6 Elphidium sp.

7 Cibicides sp. 7 Cibicides sp. 7 Buccella sp. 7 Melonis sp. 7 Elphidium sp.

8 Cibicides sp. 8 Cibicides sp. 8 Buccella sp. 8 Melonis sp. 8 Elphidium sp.

9 Cibicides sp. 9 Cibicides sp. 9 Buccella sp. 9 Melonis sp. 9 Elphidium sp.

10 Cibicides sp. 10 Cibicides sp. 10 Buccella sp. 10 Melonis sp. 10 Fissurina sp. 

11 Cibicides sp. 11 Cibicides sp. 11 Buccella sp. 11 Melonis sp. 11 Fissurina sp. 

12 Cibicides sp. 12 Cibicides sp. 12 Buccella sp. 12 Melonis sp. 12 Fissurina sp. 

13 Cibicides sp. 13 Cibicides sp. 13 Buccella sp. 13 Melonis sp. 13 Fissurina sp. 

14 Cibicides sp. 14 Cibicides sp. 14 Buccella sp. 14 Melonis sp. 14 Fissurina sp. 

15 Cibicides sp. 15 Cibicides sp. 15 Buccella sp. 15 Melonis sp. 15 Fissurina sp. 

16 Cibicides sp. 16 Cibicides sp. 16 Buccella sp. 16 Melonis sp. 16 Fissurina sp. 

17 Cibicides sp. 17 Cibicides sp. 17 Buccella sp. 17 Melonis sp. 17 Fissurina sp. 

18 Cibicides sp. 18 Cibicides sp. 18 Buccella sp. 18 Melonis sp. 18 Fissurina sp. 

19 Cibicides sp. 19 Cibicides sp. 19 Buccella sp. 19 Melonis sp. 19 Fissurina sp. 

20 Cibicides sp. 20 Cibicides sp. 20 Buccella sp. 20 Melonis sp. 20 Pullenia sp.

21 Cibicides sp. 21 Cibicides sp. 21 Buccella sp. 21 Melonis sp. 21 Oolina sp.

22 Cibicides sp. 22 Cibicides sp. 22 Buccella sp. 22 Haynesina sp. 22 Trifarina sp.

23 Cibicides sp. 23 Cibicides sp. 23 Buccella sp. 23 Haynesina sp. 23 Melonis sp.

24 Cibicides sp. 24 Cibicides sp. 24 Buccella sp. 24 Haynesina sp. 24 Melonis sp.

25 Cibicides sp. 25 Cibicides sp. 25 Buccella sp. 25 Haynesina sp. 25 Buccella sp. 

26 Cibicides sp. 26 Cibicides sp. 26 Buccella sp. 26 Haynesina sp. 26 Buccella sp. 

27 Cibicides sp. 27 Cibicides sp. 27 Buccella sp. 27 Haynesina sp. 27 Buccella sp. 

28 Cibicides sp. 28 Cibicides sp. 28 Buccella sp. 28 Haynesina sp. 28 Buccella sp. 

29 Cibicides sp. 29 Cibicides sp. 29 Buccella sp. 29 Haynesina sp. 29 Buccella sp. 

30 Cibicides sp. 30 Cibicides sp. 30 Buccella sp. 30 Haynesina sp. 30 Hoeglundina sp.

31 Cibicides sp. 31 Cibicides sp. 31 Buccella sp. 31 Haynesina sp. 31 Hoeglundina sp.

32 Cibicides sp. 32 Cibicides sp. 32 Buccella sp. 32 Haynesina sp. 32 Cibicides sp.

33 Cibicides sp. 33 Cibicides sp. 33 Buccella sp. 33 Haynesina sp. 33 Cibicides sp.

34 Cibicides sp. 34 Cibicides sp. 34 Buccella sp. 34 Elphidium sp. 34 Cibicides sp.

35 Cibicides sp. 35 Cibicides sp. 35 Buccella sp. 35 Elphidium sp. 35 Melonis sp.

36 Cibicides sp. 36 Cibicides sp. 36 Buccella sp. 36 Elphidium sp. 36 Cassidulina sp.

37 Cibicides sp. 37 Cibicides sp. 37 Buccella sp. 37 Elphidium sp. 37 Cassidulina sp.

38 Cibicides sp. 38 Cibicides sp. 38 Buccella sp. 38 Elphidium sp. 38 Hoeglundina sp.

39 Cibicides sp. 39 Cibicides sp. 39 Buccella sp. 39 Elphidium sp. 39 Hoeglundina sp.

40 Cibicides sp. 40 Cibicides sp. 40 Buccella sp. 40 Elphidium sp. 40 Elphidium sp.

41 Cibicides sp. 41 Cibicides sp. 41 Buccella sp. 41 Elphidium sp. 41 Cibicides sp.

42 Cibicides sp. 42 Cibicides sp. 42 Buccella sp. 42 Elphidium sp. 42 Cibicides sp.

43 Cibicides sp. 43 Cibicides sp. 43 Buccella sp. 43 Elphidium sp. 43 Oolina sp.

44 Cibicides sp. 44 Cibicides sp. 44 Buccella sp. 44 Elphidium sp. 44 Cibicides sp.

45 Cibicides sp. 45 Cibicides sp. 45 Buccella sp. 45 Elphidium sp.

46 Cibicides sp. 46 Cibicides sp. 46 Buccella sp. 46 Elphidium sp.

47 Cibicides sp. 47 Cibicides sp. 47 Buccella sp. 47 Elphidium sp.

48 Cibicides sp. 48 Cibicides sp. 48 Buccella sp. 48 Elphidium sp.

49 Cibicides sp. 49 Cibicides sp. 49 Buccella sp. 49 Elphidium sp.

50 Cibicides sp. 50 Cibicides sp. 50 Buccella sp. 50 Elphidium sp.

51 Cibicides sp. 51 Cibicides sp. 51 Buccella sp. 51 Elphidium sp.

52 Cibicides sp. 52 Cibicides sp. 52 Buccella sp. 52 Elphidium sp.

53 Cibicides sp. 53 Cibicides sp. 53 Hoeglundina sp. 53 Elphidium sp.

54 Cibicides sp. 54 Cibicides sp. 54 Hoeglundina sp. 54 Elphidium sp.

55 Cibicides sp. 55 Cibicides sp. 55 Hoeglundina sp. 55 Elphidium sp.

56 Cibicides sp. 56 Cibicides sp. 56 Hoeglundina sp. 56 Elphidium sp.

57 Cibicides sp. 57 Cibicides sp. 57 Hoeglundina sp. 57 Elphidium sp.

58 Cibicides sp. 58 Cibicides sp. 58 Hoeglundina sp. 58 Elphidium sp.

59 Cibicides sp. 59 Cibicides sp. 59 Hoeglundina sp. 59 Elphidium sp.

60 Cibicides sp. 60 Cibicides sp. 60 Hoeglundina sp. 60 Elphidium sp.

61 Cibicides sp. 61 Cibicides sp. 61 Cibicides sp. 61 Elphidium sp.

62 Cibicides sp. 62 Cibicides sp. 62 Cibicides sp. 62 Elphidium sp.

63 Cibicides sp. 63 Cibicides sp. 63 Cibicides sp. 63 Elphidium sp.

64 Cibicides sp. 64 Cibicides sp. 64 Cibicides sp. 64 Elphidium sp.
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Table A.6 Sample #3 7-7.5 cm

AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus

105636 1 Cibicides sp. 105637 1 Cibicides sp. 105638 1 Buccella sp. 105639 1 Cassidulina sp. 105640 1 Elphidium sp.

2 Cibicides sp. 2 Cibicides sp. 2 Buccella sp. 2 Cassidulina sp. 2 Elphidium sp.

3 Cibicides sp. 3 Cibicides sp. 3 Buccella sp. 3 Cassidulina sp. 3 Elphidium sp.

4 Cibicides sp. 4 Cibicides sp. 4 Buccella sp. 4 Cassidulina sp. 4 Elphidium sp.

5 Cibicides sp. 5 Cibicides sp. 5 Buccella sp. 5 Cassidulina sp. 5 Elphidium sp.

6 Cibicides sp. 6 Cibicides sp. 6 Buccella sp. 6 Cassidulina sp. 6 Elphidium sp.

7 Cibicides sp. 7 Cibicides sp. 7 Buccella sp. 7 Cassidulina sp. 7 Elphidium sp.

8 Cibicides sp. 8 Cibicides sp. 8 Buccella sp. 8 Cassidulina sp. 8 Elphidium sp.

9 Cibicides sp. 9 Cibicides sp. 9 Buccella sp. 9 Cassidulina sp. 9 Elphidium sp.

10 Cibicides sp. 10 Cibicides sp. 10 Buccella sp. 10 Cassidulina sp. 10 Elphidium sp.

11 Cibicides sp. 11 Cibicides sp. 11 Buccella sp. 11 Cassidulina sp. 11 Elphidium sp.

12 Cibicides sp. 12 Cibicides sp. 12 Buccella sp. 12 Cassidulina sp. 12 Elphidium sp.

13 Cibicides sp. 13 Cibicides sp. 13 Buccella sp. 13 Cassidulina sp. 13 Elphidium sp.

14 Cibicides sp. 14 Cibicides sp. 14 Buccella sp. 14 Melonis sp. 14 Elphidium sp.

15 Cibicides sp. 15 Cibicides sp. 15 Buccella sp. 15 Melonis sp. 15 Elphidium sp.

16 Cibicides sp. 16 Cibicides sp. 16 Buccella sp. 16 Melonis sp. 16 Elphidium sp.

17 Cibicides sp. 17 Cibicides sp. 17 Buccella sp. 17 Melonis sp. 17 Melonis sp.

18 Cibicides sp. 18 Cibicides sp. 18 Buccella sp. 18 Melonis sp. 18 Melonis sp.

19 Cibicides sp. 19 Cibicides sp. 19 Buccella sp. 19 Melonis sp. 19 Melonis sp.

20 Cibicides sp. 20 Cibicides sp. 20 Buccella sp. 20 Melonis sp. 20 Melonis sp.

21 Cibicides sp. 21 Cibicides sp. 21 Buccella sp. 21 Melonis sp. 21 Melonis sp.

22 Cibicides sp. 22 Cibicides sp. 22 Buccella sp. 22 Melonis sp. 22 Melonis sp.

23 Cibicides sp. 23 Cibicides sp. 23 Buccella sp. 23 Melonis sp. 23 Melonis sp.

24 Cibicides sp. 24 Cibicides sp. 24 Buccella sp. 24 Melonis sp. 24 Melonis sp.

25 Cibicides sp. 25 Cibicides sp. 25 Buccella sp. 25 Melonis sp. 25 Melonis sp.

26 Cibicides sp. 26 Cibicides sp. 26 Buccella sp. 26 Melonis sp. 26 Cassidulina sp.

27 Cibicides sp. 27 Cibicides sp. 27 Buccella sp. 27 Haynesina sp. 27 Cassidulina sp.

28 Cibicides sp. 28 Cibicides sp. 28 Buccella sp. 28 Haynesina sp. 28 Cassidulina sp.

29 Cibicides sp. 29 Cibicides sp. 29 Buccella sp. 29 Haynesina sp. 29 Cassidulina sp.

30 Cibicides sp. 30 Cibicides sp. 30 Buccella sp. 30 Haynesina sp. 30 Cassidulina sp.

31 Cibicides sp. 31 Cibicides sp. 31 Buccella sp. 31 Haynesina sp. 31 Cassidulina sp.

32 Cibicides sp. 32 Cibicides sp. 32 Buccella sp. 32 Haynesina sp. 32 Cassidulina sp.

33 Cibicides sp. 33 Cibicides sp. 33 Buccella sp. 33 Haynesina sp. 33 Cibicides sp.

34 Cibicides sp. 34 Cibicides sp. 34 Buccella sp. 34 Haynesina sp. 34 Cibicides sp.

35 Cibicides sp. 35 Cibicides sp. 35 Buccella sp. 35 Haynesina sp. 35 Cibicides sp.

36 Cibicides sp. 36 Cibicides sp. 36 Buccella sp. 36 Haynesina sp. 36 Cibicides sp.

37 Cibicides sp. 37 Cibicides sp. 37 Buccella sp. 37 Haynesina sp. 37 Cibicides sp.

38 Cibicides sp. 38 Cibicides sp. 38 Buccella sp. 38 Haynesina sp. 38 Cibicides sp.

39 Cibicides sp. 39 Cibicides sp. 39 Buccella sp. 39 Haynesina sp. 39 Cibicides sp.

40 Cibicides sp. 40 Cibicides sp. 40 Buccella sp. 40 Haynesina sp. 40 Cibicides sp.

41 Cibicides sp. 41 Buccella sp. 41 Buccella sp. 41 Elphidium sp. 41 Bolivina sp.

42 Cibicides sp. 42 Buccella sp. 42 Buccella sp. 42 Elphidium sp. 42 Oolina sp.

43 Cibicides sp. 43 Buccella sp. 43 Buccella sp. 43 Elphidium sp. 43 Trifarina sp.

44 Cibicides sp. 44 Buccella sp. 44 Buccella sp. 44 Elphidium sp. 44 Trifarina sp.

45 Cibicides sp. 45 Buccella sp. 45 Buccella sp. 45 Elphidium sp. 45 Trifarina sp.

46 Cibicides sp. 46 Buccella sp. 46 Buccella sp. 46 Elphidium sp. 46 Trifarina sp.

47 Cibicides sp. 47 Buccella sp. 47 Hoeglundina sp. 47 Elphidium sp. 47 Trifarina sp.

48 Cibicides sp. 48 Buccella sp. 48 Hoeglundina sp. 48 Elphidium sp. 48 Trifarina sp.

49 Cibicides sp. 49 Buccella sp. 49 Hoeglundina sp. 49 Elphidium sp. 49 Trifarina sp.

50 Cibicides sp. 50 Buccella sp. 50 Hoeglundina sp. 50 Elphidium sp. 50 Trifarina sp.

51 Cibicides sp. 51 Buccella sp. 51 Hoeglundina sp. 51 Elphidium sp. 51 Pullenia sp.

52 Cibicides sp. 52 Buccella sp. 52 Hoeglundina sp. 52 Elphidium sp. 52 Pullenia sp.

53 Cibicides sp. 53 Buccella sp. 53 Hoeglundina sp. 53 Elphidium sp. 53 Pullenia sp.

54 Cibicides sp. 54 Buccella sp. 54 Hoeglundina sp. 54 Elphidium sp. 54 Pullenia sp.

55 Cibicides sp. 55 Buccella sp. 55 Hoeglundina sp. 55 Elphidium sp. 55 Fissurina sp. 

56 Cibicides sp. 56 Buccella sp. 56 Hoeglundina sp. 56 Elphidium sp. 56 Fissurina sp. 

57 Cibicides sp. 57 Buccella sp. 57 Hoeglundina sp. 57 Elphidium sp. 57 Fissurina sp. 

58 Cibicides sp. 58 Buccella sp. 58 Hoeglundina sp. 58 Elphidium sp. 58 Fissurina sp. 

59 Cibicides sp. 59 Buccella sp. 59 Hoeglundina sp. 59 Elphidium sp. 59 Fissurina sp. 

60 Cibicides sp. 60 Buccella sp. 60 Hoeglundina sp. 60 Elphidium sp. 60 Fissurina sp. 
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Table A.7 Sample #4 6-6.5 cm

AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus

105641 1 Cibicides sp. 105642 1 Cibicides sp. 105643 1 Buccella sp. 105644 1 Haynesina sp. 105645 1 Cibicides sp.

2 Cibicides sp. 2 Cibicides sp. 2 Buccella sp. 2 Haynesina sp. 2 Cibicides sp.

3 Cibicides sp. 3 Cibicides sp. 3 Buccella sp. 3 Haynesina sp. 3 Cibicides sp.

4 Cibicides sp. 4 Cibicides sp. 4 Buccella sp. 4 Haynesina sp. 4 Cibicides sp.

5 Cibicides sp. 5 Cibicides sp. 5 Buccella sp. 5 Haynesina sp. 5 Cibicides sp.

6 Cibicides sp. 6 Cibicides sp. 6 Buccella sp. 6 Haynesina sp. 6 Cibicides sp.

7 Cibicides sp. 7 Cibicides sp. 7 Buccella sp. 7 Haynesina sp. 7 Cibicides sp.

8 Cibicides sp. 8 Cibicides sp. 8 Buccella sp. 8 Haynesina sp. 8 Cibicides sp.

9 Cibicides sp. 9 Cibicides sp. 9 Buccella sp. 9 Haynesina sp. 9 Cibicides sp.

10 Cibicides sp. 10 Cibicides sp. 10 Buccella sp. 10 Elphidium sp. 10 Cibicides sp.

11 Cibicides sp. 11 Cibicides sp. 11 Buccella sp. 11 Elphidium sp. 11 Cibicides sp.

12 Cibicides sp. 12 Cibicides sp. 12 Buccella sp. 12 Elphidium sp. 12 Cibicides sp.

13 Cibicides sp. 13 Cibicides sp. 13 Buccella sp. 13 Elphidium sp. 13 Cibicides sp.

14 Cibicides sp. 14 Cibicides sp. 14 Buccella sp. 14 Elphidium sp. 14 Cibicides sp.

15 Cibicides sp. 15 Cibicides sp. 15 Buccella sp. 15 Elphidium sp. 15 Cibicides sp.

16 Cibicides sp. 16 Cibicides sp. 16 Buccella sp. 16 Elphidium sp. 16 Cibicides sp.

17 Cibicides sp. 17 Cibicides sp. 17 Buccella sp. 17 Elphidium sp. 17 Cibicides sp.

18 Cibicides sp. 18 Cibicides sp. 18 Buccella sp. 18 Elphidium sp. 18 Cibicides sp.

19 Cibicides sp. 19 Cibicides sp. 19 Buccella sp. 19 Elphidium sp. 19 Cibicides sp.

20 Cibicides sp. 20 Cibicides sp. 20 Buccella sp. 20 Elphidium sp. 20 Cibicides sp.

21 Cibicides sp. 21 Cibicides sp. 21 Hoeglundina sp. 21 Elphidium sp. 21 Buccella sp. 

22 Cibicides sp. 22 Cibicides sp. 22 Hoeglundina sp. 22 Elphidium sp. 22 Buccella sp. 

23 Cibicides sp. 23 Cibicides sp. 23 Hoeglundina sp. 23 Elphidium sp. 23 Buccella sp. 

24 Cibicides sp. 24 Cibicides sp. 24 Hoeglundina sp. 24 Elphidium sp. 24 Buccella sp. 

25 Cibicides sp. 25 Cibicides sp. 25 Hoeglundina sp. 25 Elphidium sp. 25 Buccella sp. 

26 Cibicides sp. 26 Cibicides sp. 26 Hoeglundina sp. 26 Elphidium sp. 26 Buccella sp. 

27 Cibicides sp. 27 Cibicides sp. 27 Hoeglundina sp. 27 Elphidium sp. 27 Cassidulina sp.

28 Cibicides sp. 28 Cibicides sp. 28 Hoeglundina sp. 28 Elphidium sp. 28 Cassidulina sp.

29 Cibicides sp. 29 Cibicides sp. 29 Hoeglundina sp. 29 Elphidium sp. 29 Cassidulina sp.

30 Cibicides sp. 30 Cibicides sp. 30 Hoeglundina sp. 30 Elphidium sp. 30 Cassidulina sp.

31 Cibicides sp. 31 Cibicides sp. 31 Cassidulina sp. 31 Elphidium sp. 31 Cassidulina sp.

32 Cibicides sp. 32 Cibicides sp. 32 Cassidulina sp. 32 Elphidium sp. 32 Cassidulina sp.

33 Cibicides sp. 33 Cibicides sp. 33 Cassidulina sp. 33 Elphidium sp. 33 Cassidulina sp.

34 Cibicides sp. 34 Cibicides sp. 34 Cassidulina sp. 34 Elphidium sp. 34 Melonis sp.

35 Cibicides sp. 35 Cibicides sp. 35 Cassidulina sp. 35 Elphidium sp. 35 Haynesina sp. 

36 Cibicides sp. 36 Cibicides sp. 36 Cassidulina sp. 36 Elphidium sp. 36 Haynesina sp. 

37 Cibicides sp. 37 Cibicides sp. 37 Cassidulina sp. 37 Elphidium sp. 37 Pullenia sp.

38 Cibicides sp. 38 Cibicides sp. 38 Cassidulina sp. 38 Elphidium sp. 38 Pullenia sp.

39 Cibicides sp. 39 Cibicides sp. 39 Cassidulina sp. 39 Elphidium sp. 39 Fissurina sp. 

40 Cibicides sp. 40 Cibicides sp. 40 Cassidulina sp. 40 Elphidium sp. 40 Fissurina sp. 

41 Cibicides sp. 41 Cibicides sp. 41 Cassidulina sp. 41 Elphidium sp. 41 Lagena sp.

42 Cibicides sp. 42 Cibicides sp. 42 Cassidulina sp. 42 Elphidium sp. 42 Triloculina sp.

43 Cibicides sp. 43 Cibicides sp. 43 Cassidulina sp. 43 Elphidium sp. 43 Cibicides sp.

44 Cibicides sp. 44 Cibicides sp. 44 Cassidulina sp. 44 Elphidium sp. 44 Cibicides sp.

45 Cibicides sp. 45 Cibicides sp. 45 Cassidulina sp. 45 Elphidium sp. 45 Cibicides sp.

46 Cibicides sp. 46 Cibicides sp. 46 Cassidulina sp. 46 Elphidium sp. 46 Cibicides sp.

47 Cibicides sp. 47 Cibicides sp. 47 Cassidulina sp. 47 Melonis sp. 47 Cibicides sp.

48 Cibicides sp. 48 Cibicides sp. 48 Melonis sp. 48 Melonis sp. 48 Buccella sp. 

49 Cibicides sp. 49 Cibicides sp. 49 Melonis sp. 49 Melonis sp. 49 Buccella sp. 

50 Cibicides sp. 50 Cibicides sp. 50 Melonis sp. 50 Cassidulina sp. 50 Buccella sp. 

51 Cibicides sp. 51 Cibicides sp. 51 Melonis sp. 51 Cassidulina sp. 51 Buccella sp. 

52 Cibicides sp. 52 Cibicides sp. 52 Melonis sp. 52 Cassidulina sp. 52 Buccella sp. 

53 Cibicides sp. 53 Buccella sp. 53 Melonis sp. 53 Cassidulina sp. 53 Elphidium sp.

54 Cibicides sp. 54 Buccella sp. 54 Haynesina sp. 54 Cibicides sp. 54 Elphidium sp.

55 Cibicides sp. 55 Buccella sp. 55 Haynesina sp. 55 Cibicides sp. 55 Elphidium sp.

56 Cibicides sp. 56 Buccella sp. 56 Haynesina sp. 56 Cibicides sp. 56 Elphidium sp.

57 Cibicides sp. 57 Buccella sp. 57 Haynesina sp. 57 Cibicides sp. 57 Elphidium sp.

58 Cibicides sp. 58 Buccella sp. 58 Haynesina sp. 58 Cibicides sp. 58 Haynesina sp. 

59 Cibicides sp. 59 Buccella sp. 59 Haynesina sp. 59 Cibicides sp. 59 Haynesina sp. 

60 Cibicides sp. 60 Buccella sp. 60 Haynesina sp. 60 Cibicides sp. 60 Haynesina sp. 
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Table A.8 Sample #5 5-5.5 cm

AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus

105646 1 Cibicides sp. 105647 1 Cibicides sp. 105648 1 Buccella sp. 108505 1 Melonis sp. 108506 1 Elphidium sp.

2 Cibicides sp. 2 Cibicides sp. 2 Buccella sp. 2 Melonis sp. 2 Elphidium sp.

3 Cibicides sp. 3 Cibicides sp. 3 Buccella sp. 3 Melonis sp. 3 Elphidium sp.

4 Cibicides sp. 4 Cibicides sp. 4 Buccella sp. 4 Melonis sp. 4 Elphidium sp.

5 Cibicides sp. 5 Cibicides sp. 5 Buccella sp. 5 Melonis sp. 5 Elphidium sp.

6 Cibicides sp. 6 Cibicides sp. 6 Buccella sp. 6 Melonis sp. 6 Elphidium sp.

7 Cibicides sp. 7 Cibicides sp. 7 Buccella sp. 7 Melonis sp. 7 Elphidium sp.

8 Cibicides sp. 8 Cibicides sp. 8 Buccella sp. 8 Melonis sp. 8 Elphidium sp.

9 Cibicides sp. 9 Cibicides sp. 9 Buccella sp. 9 Melonis sp. 9 Elphidium sp.

10 Cibicides sp. 10 Cibicides sp. 10 Buccella sp. 10 Melonis sp. 10 Elphidium sp.

11 Cibicides sp. 11 Cibicides sp. 11 Buccella sp. 11 Melonis sp. 11 Elphidium sp.

12 Cibicides sp. 12 Cibicides sp. 12 Buccella sp. 12 Melonis sp. 12 Elphidium sp.

13 Cibicides sp. 13 Cibicides sp. 13 Buccella sp. 13 Melonis sp. 13 Elphidium sp.

14 Cibicides sp. 14 Cibicides sp. 14 Buccella sp. 14 Haynesina sp. 14 Elphidium sp.

15 Cibicides sp. 15 Cibicides sp. 15 Buccella sp. 15 Haynesina sp. 15 Elphidium sp.

16 Cibicides sp. 16 Cibicides sp. 16 Buccella sp. 16 Haynesina sp. 16 Elphidium sp.

17 Cibicides sp. 17 Cibicides sp. 17 Buccella sp. 17 Haynesina sp. 17 Elphidium sp.

18 Cibicides sp. 18 Cibicides sp. 18 Buccella sp. 18 Haynesina sp. 18 Elphidium sp.

19 Cibicides sp. 19 Cibicides sp. 19 Buccella sp. 19 Haynesina sp. 19 Elphidium sp.

20 Cibicides sp. 20 Cibicides sp. 20 Buccella sp. 20 Haynesina sp. 20 Fissurina sp. 

21 Cibicides sp. 21 Cibicides sp. 21 Hoeglundina sp. 21 Haynesina sp. 21 Fissurina sp. 

22 Cibicides sp. 22 Cibicides sp. 22 Hoeglundina sp. 22 Haynesina sp. 22 Fissurina sp. 

23 Cibicides sp. 23 Cibicides sp. 23 Hoeglundina sp. 23 Haynesina sp. 23 Fissurina sp. 

24 Cibicides sp. 24 Cibicides sp. 24 Hoeglundina sp. 24 Haynesina sp. 24 Fissurina sp. 

25 Cibicides sp. 25 Cibicides sp. 25 Hoeglundina sp. 25 Haynesina sp. 25 Fissurina sp. 

26 Cibicides sp. 26 Cibicides sp. 26 Hoeglundina sp. 26 Haynesina sp. 26 Fissurina sp. 

27 Cibicides sp. 27 Cibicides sp. 27 Hoeglundina sp. 27 Haynesina sp. 27 Pullenia sp.

28 Cibicides sp. 28 Cibicides sp. 28 Hoeglundina sp. 28 Haynesina sp. 28 Pullenia sp.

29 Cibicides sp. 29 Cibicides sp. 29 Hoeglundina sp. 29 Haynesina sp. 29 Pullenia sp.

30 Cibicides sp. 30 Cibicides sp. 30 Hoeglundina sp. 30 Haynesina sp. 30 Pullenia sp.

31 Cibicides sp. 31 Cibicides sp. 31 Hoeglundina sp. 31 Haynesina sp. 31 Pullenia sp.

32 Cibicides sp. 32 Cibicides sp. 32 Hoeglundina sp. 32 Haynesina sp. 32 Trifarina sp.

33 Cibicides sp. 33 Cibicides sp. 33 Cassidulina sp. 33 Haynesina sp. 33 Trifarina sp.

34 Cibicides sp. 34 Buccella sp. 34 Cassidulina sp. 34 Haynesina sp. 34 Trifarina sp.

35 Cibicides sp. 35 Buccella sp. 35 Cassidulina sp. 35 Haynesina sp. 35 Trifarina sp.

36 Cibicides sp. 36 Buccella sp. 36 Cassidulina sp. 36 Haynesina sp. 36 Trifarina sp.

37 Cibicides sp. 37 Buccella sp. 37 Cassidulina sp. 37 Elphidium sp. 37 Trifarina sp.

38 Cibicides sp. 38 Buccella sp. 38 Cassidulina sp. 38 Elphidium sp. 38 Bolivina sp.

39 Cibicides sp. 39 Buccella sp. 39 Cassidulina sp. 39 Elphidium sp. 39 Elphidium sp.

40 Cibicides sp. 40 Buccella sp. 40 Cassidulina sp. 40 Elphidium sp. 40 Elphidium sp.

41 Cibicides sp. 41 Buccella sp. 41 Cassidulina sp. 41 Elphidium sp. 41 Elphidium sp.

42 Cibicides sp. 42 Buccella sp. 42 Cassidulina sp. 42 Elphidium sp. 42 Elphidium sp.

43 Cibicides sp. 43 Buccella sp. 43 Cassidulina sp. 43 Elphidium sp. 43 Elphidium sp.

44 Cibicides sp. 44 Buccella sp. 44 Cassidulina sp. 44 Elphidium sp. 44 Elphidium sp.

45 Cibicides sp. 45 Buccella sp. 45 Cassidulina sp. 45 Elphidium sp. 45 Elphidium sp.

46 Cibicides sp. 46 Buccella sp. 46 Cassidulina sp. 46 Elphidium sp. 46 Haynesina sp. 

47 Cibicides sp. 47 Buccella sp. 47 Cassidulina sp. 47 Elphidium sp. 47 Haynesina sp. 

48 Cibicides sp. 48 Buccella sp. 48 Cassidulina sp. 48 Elphidium sp. 48 Haynesina sp. 

49 Cibicides sp. 49 Buccella sp. 49 Cassidulina sp. 49 Elphidium sp. 49 Haynesina sp. 

50 Cibicides sp. 50 Buccella sp. 50 Cassidulina sp. 50 Elphidium sp. 50 Haynesina sp. 

51 Cibicides sp. 51 Buccella sp. 51 Melonis sp. 51 Elphidium sp. 51 Haynesina sp. 

52 Cibicides sp. 52 Buccella sp. 52 Melonis sp. 52 Elphidium sp. 52 Haynesina sp. 

53 Cibicides sp. 53 Buccella sp. 53 Melonis sp. 53 Elphidium sp. 53 Haynesina sp. 

54 Cibicides sp. 54 Buccella sp. 54 Melonis sp. 54 Elphidium sp. 54 Haynesina sp. 

55 Cibicides sp. 55 Buccella sp. 55 Melonis sp. 55 Elphidium sp. 55 Haynesina sp. 

56 Cibicides sp. 56 Buccella sp. 56 Melonis sp. 56 Elphidium sp. 56 Haynesina sp. 

57 Cibicides sp. 57 Buccella sp. 57 Melonis sp. 57 Elphidium sp. 57 Haynesina sp. 

58 Cibicides sp. 58 Buccella sp. 58 Melonis sp. 58 Elphidium sp. 58 Melonis sp.

59 Cibicides sp. 59 Buccella sp. 59 Melonis sp. 59 Elphidium sp. 59 Melonis sp.

60 Cibicides sp. 60 Buccella sp. 60 Melonis sp. 60 Elphidium sp. 60 Melonis sp.
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Table A.9 Sample #6 4-4.5 cm

AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus

108507 1 Cibicides sp. 108508 1 Buccella sp. 108509 1 Cassidulina sp. 108510 1 Elphidium sp. 108511 1 Elphidium sp.

2 Cibicides sp. 2 Buccella sp. 2 Cassidulina sp. 2 Elphidium sp. 2 Melonis sp.

3 Cibicides sp. 3 Buccella sp. 3 Cassidulina sp. 3 Elphidium sp. 3 Melonis sp.

4 Cibicides sp. 4 Buccella sp. 4 Cassidulina sp. 4 Elphidium sp. 4 Melonis sp.

5 Cibicides sp. 5 Buccella sp. 5 Cassidulina sp. 5 Elphidium sp. 5 Haynesina sp. 

6 Cibicides sp. 6 Buccella sp. 6 Cassidulina sp. 6 Elphidium sp. 6 Elphidium sp.

7 Cibicides sp. 7 Buccella sp. 7 Cassidulina sp. 7 Elphidium sp. 7 Elphidium sp.

8 Cibicides sp. 8 Buccella sp. 8 Cassidulina sp. 8 Elphidium sp. 8 Haynesina sp. 

9 Cibicides sp. 9 Buccella sp. 9 Cassidulina sp. 9 Elphidium sp. 9 Buccella sp. 

10 Cibicides sp. 10 Buccella sp. 10 Cassidulina sp. 10 Elphidium sp. 10 Buccella sp. 

11 Cibicides sp. 11 Buccella sp. 11 Cassidulina sp. 11 Elphidium sp. 11 Cibicides sp.

12 Cibicides sp. 12 Buccella sp. 12 Cassidulina sp. 12 Elphidium sp. 12 Cibicides sp.

13 Cibicides sp. 13 Buccella sp. 13 Cassidulina sp. 13 Elphidium sp. 13 Haynesina sp. 

14 Cibicides sp. 14 Buccella sp. 14 Cassidulina sp. 14 Elphidium sp. 14 Haynesina sp. 

15 Cibicides sp. 15 Buccella sp. 15 Cassidulina sp. 15 Elphidium sp. 15 Cibicides sp.

16 Cibicides sp. 16 Buccella sp. 16 Cassidulina sp. 16 Elphidium sp. 16 Cibicides sp.

17 Cibicides sp. 17 Buccella sp. 17 Cassidulina sp. 17 Elphidium sp. 17 Haynesina sp. 

18 Cibicides sp. 18 Buccella sp. 18 Cassidulina sp. 18 Elphidium sp. 18 Cibicides sp.

19 Cibicides sp. 19 Buccella sp. 19 Cassidulina sp. 19 Elphidium sp. 19 Melonis sp.

20 Cibicides sp. 20 Buccella sp. 20 Cassidulina sp. 20 Elphidium sp. 20 Melonis sp.

21 Cibicides sp. 21 Buccella sp. 21 Cassidulina sp. 21 Elphidium sp. 21 Elphidium sp.

22 Cibicides sp. 22 Buccella sp. 22 Cassidulina sp. 22 Elphidium sp. 22 Elphidium sp.

23 Cibicides sp. 23 Buccella sp. 23 Cassidulina sp. 23 Fissurina sp. 23 Elphidium sp.

24 Cibicides sp. 24 Buccella sp. 24 Cassidulina sp. 24 Fissurina sp. 24 Cibicides sp.

25 Cibicides sp. 25 Buccella sp. 25 Cassidulina sp. 25 Fissurina sp. 25 Buccella sp. 

26 Cibicides sp. 26 Buccella sp. 26 Cassidulina sp. 26 Fissurina sp. 26 Buccella sp. 

27 Cibicides sp. 27 Buccella sp. 27 Cassidulina sp. 27 Fissurina sp. 27 Melonis sp.

28 Cibicides sp. 28 Buccella sp. 28 Cassidulina sp. 28 Fissurina sp. 28 Haynesina sp. 

29 Cibicides sp. 29 Buccella sp. 29 Cassidulina sp. 29 Fissurina sp. 29 Haynesina sp. 

30 Cibicides sp. 30 Buccella sp. 30 Cassidulina sp. 30 Fissurina sp. 30 Haynesina sp. 

31 Cibicides sp. 31 Buccella sp. 31 Cassidulina sp. 31 Fissurina sp. 31 Elphidium sp.

32 Cibicides sp. 32 Buccella sp. 32 Cassidulina sp. 32 Fissurina sp. 32 Haynesina sp. 

33 Cibicides sp. 33 Buccella sp. 33 Cassidulina sp. 33 Fissurina sp. 33 Cibicides sp.

34 Cibicides sp. 34 Buccella sp. 34 Melonis sp. 34 Pullenia sp. 34 Cibicides sp.

35 Cibicides sp. 35 Buccella sp. 35 Melonis sp. 35 Pullenia sp. 35 Haynesina sp. 

36 Cibicides sp. 36 Buccella sp. 36 Melonis sp. 36 Pullenia sp. 36 Cibicides sp.

37 Cibicides sp. 37 Hoeglundina sp. 37 Melonis sp. 37 Pullenia sp. 37 Cibicides sp.

38 Cibicides sp. 38 Hoeglundina sp. 38 Melonis sp. 38 Pullenia sp. 38 Buccella sp. 

39 Cibicides sp. 39 Hoeglundina sp. 39 Melonis sp. 39 Pullenia sp. 39 Cibicides sp.

40 Cibicides sp. 40 Hoeglundina sp. 40 Melonis sp. 40 Trifarina sp. 40 Cibicides sp.

41 Cibicides sp. 41 Hoeglundina sp. 41 Melonis sp. 41 Triloculina sp. 41 Haynesina sp. 

42 Cibicides sp. 42 Hoeglundina sp. 42 Melonis sp. 42 Fissurina sp. 42 Haynesina sp. 

43 Cibicides sp. 43 Hoeglundina sp. 43 Melonis sp. 43 Buccella sp. 43 Haynesina sp. 

44 Cibicides sp. 44 Hoeglundina sp. 44 Melonis sp. 44 Cibicides sp. 44 Haynesina sp. 

45 Cibicides sp. 45 Hoeglundina sp. 45 Melonis sp. 45 Cibicides sp. 45 Haynesina sp. 

46 Cibicides sp. 46 Hoeglundina sp. 46 Melonis sp. 46 Cibicides sp. 46 Hoeglundina sp.

47 Cibicides sp. 47 Cassidulina sp. 47 Haynesina sp. 47 Cibicides sp. 47 Haynesina sp. 

48 Cibicides sp. 48 Cassidulina sp. 48 Haynesina sp. 48 Cibicides sp. 48 Haynesina sp. 

49 Cibicides sp. 49 Cassidulina sp. 49 Haynesina sp. 49 Elphidium sp. 49 Cibicides sp.

50 Cibicides sp. 50 Cassidulina sp. 50 Haynesina sp. 50 Haynesina sp. 50 Buccella sp. 

51 Cibicides sp. 51 Cassidulina sp. 51 Haynesina sp. 51 Haynesina sp. 51 Cibicides sp.

52 Cibicides sp. 52 Cassidulina sp. 52 Haynesina sp. 52 Haynesina sp. 52 Haynesina sp. 

53 Cibicides sp. 53 Cassidulina sp. 53 Haynesina sp. 53 Melonis sp. 53 Cassidulina sp.

54 Cibicides sp. 54 Cassidulina sp. 54 Haynesina sp. 54 Cibicides sp. 54 Cassidulina sp.

55 Cibicides sp. 55 Cassidulina sp. 55 Haynesina sp. 55 Elphidium sp. 55 Cibicides sp.

56 Buccella sp. 56 Cassidulina sp. 56 Haynesina sp. 56 Cibicides sp. 56 Fissurina sp. 

57 Buccella sp. 57 Cassidulina sp. 57 Haynesina sp. 57 Elphidium sp. 57 Melonis sp.

58 Buccella sp. 58 Cassidulina sp. 58 Haynesina sp. 58 Melonis sp. 58 Hoeglundina sp.

59 Buccella sp. 59 Cassidulina sp. 59 Haynesina sp. 59 Elphidium sp. 59 Hoeglundina sp.

60 Buccella sp. 60 Cassidulina sp. 60 Haynesina sp. 60 Pullenia sp. 60 Haynesina sp. 
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Table A.10 Sample #7 3-3.5 cm

AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus

108512 1 Cibicides sp. 108513 1 Buccella sp. 108514 1 Melonis sp. 108515 1 Elphidium sp. 108516 1 Fissurina sp.

2 Cibicides sp. 2 Buccella sp. 2 Melonis sp. 2 Elphidium sp. 2 Fissurina sp.

3 Cibicides sp. 3 Buccella sp. 3 Melonis sp. 3 Elphidium sp. 3 Fissurina sp.

4 Cibicides sp. 4 Buccella sp. 4 Melonis sp. 4 Elphidium sp. 4 Fissurina sp.

5 Cibicides sp. 5 Buccella sp. 5 Melonis sp. 5 Elphidium sp. 5 Fissurina sp.

6 Cibicides sp. 6 Buccella sp. 6 Melonis sp. 6 Elphidium sp. 6 Fissurina sp.

7 Cibicides sp. 7 Buccella sp. 7 Melonis sp. 7 Elphidium sp. 7 Nonionellina sp. 

8 Cibicides sp. 8 Buccella sp. 8 Melonis sp. 8 Elphidium sp. 8 Trifarina sp. 

9 Cibicides sp. 9 Buccella sp. 9 Melonis sp. 9 Elphidium sp. 9 Trifarina sp. 

10 Cibicides sp. 10 Buccella sp. 10 Melonis sp. 10 Elphidium sp. 10 Trifarina sp. 

11 Cibicides sp. 11 Buccella sp. 11 Melonis sp. 11 Elphidium sp. 11 Trifarina sp. 

12 Cibicides sp. 12 Buccella sp. 12 Melonis sp. 12 Elphidium sp. 12 Trifarina sp. 

13 Cibicides sp. 13 Buccella sp. 13 Melonis sp. 13 Elphidium sp. 13 Lagena sp.

14 Cibicides sp. 14 Buccella sp. 14 Melonis sp. 14 Elphidium sp. 14 Pullenia sp.

15 Cibicides sp. 15 Buccella sp. 15 Melonis sp. 15 Elphidium sp. 15 Pullenia sp.

16 Cibicides sp. 16 Buccella sp. 16 Melonis sp. 16 Elphidium sp. 16 Pullenia sp.

17 Cibicides sp. 17 Buccella sp. 17 Melonis sp. 17 Elphidium sp. 17 Pullenia sp.

18 Cibicides sp. 18 Buccella sp. 18 Melonis sp. 18 Elphidium sp. 18 Buccella sp. 

19 Cibicides sp. 19 Buccella sp. 19 Haynesina sp. 19 Elphidium sp. 19 Buccella sp. 

20 Cibicides sp. 20 Buccella sp. 20 Haynesina sp. 20 Elphidium sp. 20 Buccella sp. 

21 Cibicides sp. 21 Buccella sp. 21 Haynesina sp. 21 Elphidium sp. 21 Buccella sp. 

22 Cibicides sp. 22 Buccella sp. 22 Haynesina sp. 22 Elphidium sp. 22 Buccella sp. 

23 Cibicides sp. 23 Hoeglundina sp. 23 Haynesina sp. 23 Elphidium sp. 23 Cibicides sp.

24 Cibicides sp. 24 Hoeglundina sp. 24 Haynesina sp. 24 Elphidium sp. 24 Cibicides sp.

25 Buccella sp. 25 Hoeglundina sp. 25 Haynesina sp. 25 Elphidium sp. 25 Cibicides sp.

26 Buccella sp. 26 Hoeglundina sp. 26 Haynesina sp. 26 Elphidium sp. 26 Cibicides sp.

27 Buccella sp. 27 Hoeglundina sp. 27 Haynesina sp. 27 Elphidium sp. 27 Cibicides sp.

28 Buccella sp. 28 Hoeglundina sp. 28 Haynesina sp. 28 Elphidium sp. 28 Cibicides sp.

29 Buccella sp. 29 Hoeglundina sp. 29 Haynesina sp. 29 Elphidium sp. 29 Cibicides sp.

30 Buccella sp. 30 Hoeglundina sp. 30 Haynesina sp. 30 Elphidium sp. 30 Cibicides sp.

31 Buccella sp. 31 Hoeglundina sp. 31 Haynesina sp. 31 Elphidium sp. 31 Cibicides sp.

32 Buccella sp. 32 Hoeglundina sp. 32 Haynesina sp. 32 Elphidium sp. 32 Cibicides sp.

33 Buccella sp. 33 Hoeglundina sp. 33 Haynesina sp. 33 Elphidium sp. 33 Cibicides sp.

34 Buccella sp. 34 Cassidulina sp. 34 Haynesina sp. 34 Elphidium sp. 34 Cibicides sp.

35 Buccella sp. 35 Cassidulina sp. 35 Haynesina sp. 35 Elphidium sp. 35 Melonis sp.

36 Buccella sp. 36 Cassidulina sp. 36 Haynesina sp. 36 Elphidium sp. 36 Melonis sp.

37 Buccella sp. 37 Cassidulina sp. 37 Haynesina sp. 37 Elphidium sp. 37 Elphidium sp.

38 Buccella sp. 38 Cassidulina sp. 38 Haynesina sp. 38 Elphidium sp. 38 Elphidium sp.

39 Buccella sp. 39 Cassidulina sp. 39 Haynesina sp. 39 Elphidium sp. 39 Elphidium sp.

40 Buccella sp. 40 Cassidulina sp. 40 Elphidium sp. 40 Elphidium sp. 40 Elphidium sp.

41 Buccella sp. 41 Cassidulina sp. 41 Elphidium sp. 41 Elphidium sp. 41 Elphidium sp.

42 Buccella sp. 42 Cassidulina sp. 42 Elphidium sp. 42 Elphidium sp. 42 Elphidium sp.

43 Buccella sp. 43 Cassidulina sp. 43 Elphidium sp. 43 Elphidium sp. 43 Elphidium sp.

44 Buccella sp. 44 Cassidulina sp. 44 Elphidium sp. 44 Elphidium sp. 44 Elphidium sp.

45 Buccella sp. 45 Cassidulina sp. 45 Elphidium sp. 45 Elphidium sp. 45 Elphidium sp.

46 Buccella sp. 46 Cassidulina sp. 46 Elphidium sp. 46 Elphidium sp. 46 Elphidium sp.

47 Buccella sp. 47 Cassidulina sp. 47 Elphidium sp. 47 Elphidium sp. 47 Elphidium sp.

48 Buccella sp. 48 Cassidulina sp. 48 Elphidium sp. 48 Elphidium sp. 48 Elphidium sp.

49 Buccella sp. 49 Cassidulina sp. 49 Elphidium sp. 49 Elphidium sp. 49 Elphidium sp.

50 Buccella sp. 50 Melonis sp. 50 Elphidium sp. 50 Elphidium sp. 50 Elphidium sp.

51 Buccella sp. 51 Melonis sp. 51 Elphidium sp. 51 Elphidium sp. 51 Elphidium sp.

52 Buccella sp. 52 Melonis sp. 52 Elphidium sp. 52 Elphidium sp. 52 Elphidium sp.

53 Buccella sp. 53 Melonis sp. 53 Elphidium sp. 53 Elphidium sp. 53 Elphidium sp.

54 Buccella sp. 54 Melonis sp. 54 Elphidium sp. 54 Elphidium sp. 54 Hoeglundina sp.

55 Buccella sp. 55 Melonis sp. 55 Elphidium sp. 55 Elphidium sp. 55 Haynesina sp. 

56 Buccella sp. 56 Melonis sp. 56 Elphidium sp. 56 Elphidium sp. 56 Cassidulina sp.

57 Buccella sp. 57 Melonis sp. 57 Elphidium sp. 57 Elphidium sp. 57 Cassidulina sp.

58 Buccella sp. 58 Melonis sp. 58 Elphidium sp. 58 Elphidium sp. 58 Cibicides sp.

59 Buccella sp. 59 Melonis sp. 59 Elphidium sp. 59 Elphidium sp. 59 Haynesina sp. 

60 Buccella sp. 60 Melonis sp. 60 Elphidium sp. 60 Elphidium sp. 60 Haynesina sp. 
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Table A.11 Sample #8 2-2.5 cm

AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus

108517 1 Cibicides sp. 108518 1 Buccella sp. 108519 1 Haynesina sp. 108520 1 Elphidium sp. 108521 1 Cibicides sp.

2 Cibicides sp. 2 Buccella sp. 2 Haynesina sp. 2 Elphidium sp. 2 Haynesina sp. 

3 Cibicides sp. 3 Buccella sp. 3 Haynesina sp. 3 Elphidium sp. 3 Haynesina sp. 

4 Cibicides sp. 4 Buccella sp. 4 Elphidium sp. 4 Elphidium sp. 4 Elphidium sp.

5 Cibicides sp. 5 Buccella sp. 5 Elphidium sp. 5 Elphidium sp. 5 Cassidulina sp.

6 Cibicides sp. 6 Buccella sp. 6 Elphidium sp. 6 Elphidium sp. 6 Elphidium sp.

7 Cibicides sp. 7 Buccella sp. 7 Elphidium sp. 7 Elphidium sp. 7 Buccella sp. 

8 Cibicides sp. 8 Buccella sp. 8 Elphidium sp. 8 Elphidium sp. 8 Melonis sp.

9 Cibicides sp. 9 Buccella sp. 9 Elphidium sp. 9 Elphidium sp. 9 Elphidium sp.

10 Cibicides sp. 10 Buccella sp. 10 Elphidium sp. 10 Elphidium sp. 10 Cibicides sp.

11 Cibicides sp. 11 Buccella sp. 11 Elphidium sp. 11 Elphidium sp. 11 Buccella sp. 

12 Buccella sp. 12 Buccella sp. 12 Elphidium sp. 12 Elphidium sp. 12 Buccella sp. 

13 Buccella sp. 13 Buccella sp. 13 Elphidium sp. 13 Fissurina sp. 13 Buccella sp. 

14 Buccella sp. 14 Buccella sp. 14 Elphidium sp. 14 Fissurina sp. 14 Oolina sp. 

15 Buccella sp. 15 Buccella sp. 15 Elphidium sp. 15 Fissurina sp. 15 Oolina sp. 

16 Buccella sp. 16 Buccella sp. 16 Elphidium sp. 16 Fissurina sp. 16 Elphidium sp.

17 Buccella sp. 17 Buccella sp. 17 Elphidium sp. 17 Fissurina sp. 17 Cibicides sp.

18 Buccella sp. 18 Buccella sp. 18 Elphidium sp. 18 Fissurina sp. 18 Buccella sp. 

19 Buccella sp. 19 Hoeglundina sp. 19 Elphidium sp. 19 Fissurina sp. 19 Haynesina sp. 

20 Buccella sp. 20 Hoeglundina sp. 20 Elphidium sp. 20 Fissurina sp. 20 Cassidulina sp.

21 Buccella sp. 21 Hoeglundina sp. 21 Elphidium sp. 21 Pullenia sp. 21 Haynesina sp. 

22 Buccella sp. 22 Hoeglundina sp. 22 Elphidium sp. 22 Pullenia sp. 22 Elphidium sp.

23 Buccella sp. 23 Hoeglundina sp. 23 Elphidium sp. 23 Pullenia sp. 23 Melonis sp.

24 Buccella sp. 24 Hoeglundina sp. 24 Elphidium sp. 24 Pullenia sp. 24 Haynesina sp. 

25 Buccella sp. 25 Hoeglundina sp. 25 Elphidium sp. 25 Pullenia sp. 25 Cassidulina sp.

26 Buccella sp. 26 Cassidulina sp. 26 Elphidium sp. 26 Buccella sp. 26 Buccella sp. 

27 Buccella sp. 27 Cassidulina sp. 27 Elphidium sp. 27 Hoeglundina sp. 27 Cassidulina sp.

28 Buccella sp. 28 Cassidulina sp. 28 Elphidium sp. 28 Hoeglundina sp. 28 Haynesina sp. 

29 Buccella sp. 29 Cassidulina sp. 29 Elphidium sp. 29 Cassidulina sp. 29 Fissurina sp.

30 Buccella sp. 30 Cassidulina sp. 30 Elphidium sp. 30 Cibicides sp. 30 Oolina sp. 

31 Buccella sp. 31 Cassidulina sp. 31 Elphidium sp. 31 Melonis sp. 31 Cibicides sp.

32 Buccella sp. 32 Cassidulina sp. 32 Elphidium sp. 32 Oolina sp. 32 Hoeglundina sp.

33 Buccella sp. 33 Cassidulina sp. 33 Elphidium sp. 33 Elphidium sp. 33 Haynesina sp. 

34 Buccella sp. 34 Cassidulina sp. 34 Elphidium sp. 34 Haynesina sp. 34 Quinqueloculina sp.

35 Buccella sp. 35 Cassidulina sp. 35 Elphidium sp. 35 Elphidium sp. 35 Elphidium sp.

36 Buccella sp. 36 Melonis sp. 36 Elphidium sp. 36 Buccella sp. 36 Cibicides sp.

37 Buccella sp. 37 Melonis sp. 37 Elphidium sp. 37 Cibicides sp. 37 Cassidulina sp.

38 Buccella sp. 38 Melonis sp. 38 Elphidium sp. 38 Melonis sp. 38 Cassidulina sp.

39 Buccella sp. 39 Melonis sp. 39 Elphidium sp. 39 Cibicides sp. 39 Buccella sp. 

40 Buccella sp. 40 Melonis sp. 40 Elphidium sp. 40 Buccella sp. 40 Elphidium sp.

41 Buccella sp. 41 Melonis sp. 41 Elphidium sp. 41 Buccella sp. 41 Elphidium sp.

42 Buccella sp. 42 Melonis sp. 42 Elphidium sp. 42 Buccella sp. 42 Elphidium sp.

43 Buccella sp. 43 Melonis sp. 43 Elphidium sp. 43 Buccella sp. 43 Elphidium sp.

44 Buccella sp. 44 Melonis sp. 44 Elphidium sp. 44 Cibicides sp. 44 Elphidium sp.

45 Buccella sp. 45 Melonis sp. 45 Elphidium sp. 45 Hoeglundina sp. 45 Elphidium sp.

46 Buccella sp. 46 Melonis sp. 46 Elphidium sp. 46 Buccella sp. 46 Melonis sp.

47 Buccella sp. 47 Melonis sp. 47 Elphidium sp. 47 Oolina sp. 47 Pullenia sp.

48 Buccella sp. 48 Haynesina sp. 48 Elphidium sp. 48 Haynesina sp. 48 Haynesina sp. 

49 Buccella sp. 49 Haynesina sp. 49 Elphidium sp. 49 Buccella sp. 49 Elphidium sp.

50 Buccella sp. 50 Haynesina sp. 50 Elphidium sp. 50 Fissurina sp. 50 Elphidium sp.

51 Buccella sp. 51 Haynesina sp. 51 Elphidium sp. 51 Hoeglundina sp. 51 Cibicides sp.

52 Buccella sp. 52 Haynesina sp. 52 Elphidium sp. 52 Haynesina sp. 52 Elphidium sp.

53 Buccella sp. 53 Haynesina sp. 53 Elphidium sp. 53 Haynesina sp. 53 Cibicides sp.

54 Buccella sp. 54 Haynesina sp. 54 Elphidium sp. 54 Cibicides sp. 54 Elphidium sp.

55 Buccella sp. 55 Haynesina sp. 55 Elphidium sp. 55 Elphidium sp. 55 Haynesina sp. 

56 Buccella sp. 56 Haynesina sp. 56 Elphidium sp. 56 Elphidium sp. 56 Elphidium sp.

57 Buccella sp. 57 Haynesina sp. 57 Elphidium sp. 57 Hoeglundina sp. 57 Elphidium sp.

58 Buccella sp. 58 Haynesina sp. 58 Elphidium sp. 58 Elphidium sp. 58 Melonis sp.

59 Buccella sp. 59 Haynesina sp. 59 Elphidium sp. 59 Haynesina sp. 59 Elphidium sp.

60 Buccella sp. 60 Haynesina sp. 60 Elphidium sp. 60 Melonis sp. 60 Elphidium sp.
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Table A.12 Sample #9 1-1.5 cm

AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus

108522 1 Cibicides sp. 108523 1 Buccella sp. 108524 1 Buccella sp. 108525 1 Haynesina sp. 108526 1 Elphidium sp.

2 Cibicides sp. 2 Buccella sp. 2 Hoeglundina sp. 2 Haynesina sp. 2 Elphidium sp.

3 Cibicides sp. 3 Buccella sp. 3 Hoeglundina sp. 3 Haynesina sp. 3 Elphidium sp.

4 Cibicides sp. 4 Buccella sp. 4 Hoeglundina sp. 4 Haynesina sp. 4 Elphidium sp.

5 Cibicides sp. 5 Buccella sp. 5 Hoeglundina sp. 5 Haynesina sp. 5 Elphidium sp.

6 Cibicides sp. 6 Buccella sp. 6 Hoeglundina sp. 6 Haynesina sp. 6 Elphidium sp.

7 Cibicides sp. 7 Buccella sp. 7 Hoeglundina sp. 7 Haynesina sp. 7 Elphidium sp.

8 Cibicides sp. 8 Buccella sp. 8 Hoeglundina sp. 8 Fissurina sp. 8 Elphidium sp.

9 Cibicides sp. 9 Buccella sp. 9 Hoeglundina sp. 9 Fissurina sp. 9 Elphidium sp.

10 Cibicides sp. 10 Buccella sp. 10 Hoeglundina sp. 10 Fissurina sp. 10 Elphidium sp.

11 Cibicides sp. 11 Buccella sp. 11 Hoeglundina sp. 11 Fissurina sp. 11 Elphidium sp.

12 Cibicides sp. 12 Buccella sp. 12 Hoeglundina sp. 12 Pullenia sp. 12 Elphidium sp.

13 Cibicides sp. 13 Buccella sp. 13 Hoeglundina sp. 13 Pullenia sp. 13 Elphidium sp.

14 Cibicides sp. 14 Buccella sp. 14 Hoeglundina sp. 14 Pullenia sp. 14 Elphidium sp.

15 Cibicides sp. 15 Buccella sp. 15 Hoeglundina sp. 15 Pullenia sp. 15 Elphidium sp.

16 Buccella sp. 16 Buccella sp. 16 Hoeglundina sp. 16 Pullenia sp. 16 Elphidium sp.

17 Buccella sp. 17 Buccella sp. 17 Hoeglundina sp. 17 Oolina sp. 17 Elphidium sp.

18 Buccella sp. 18 Buccella sp. 18 Hoeglundina sp. 18 Oolina sp. 18 Elphidium sp.

19 Buccella sp. 19 Buccella sp. 19 Cassidulina sp. 19 Trifarina sp. 19 Elphidium sp.

20 Buccella sp. 20 Buccella sp. 20 Cassidulina sp. 20 Elphidium sp. 20 Elphidium sp.

21 Buccella sp. 21 Buccella sp. 21 Cassidulina sp. 21 Elphidium sp. 21 Elphidium sp.

22 Buccella sp. 22 Buccella sp. 22 Melonis sp. 22 Elphidium sp. 22 Elphidium sp.

23 Buccella sp. 23 Buccella sp. 23 Melonis sp. 23 Elphidium sp. 23 Elphidium sp.

24 Buccella sp. 24 Buccella sp. 24 Melonis sp. 24 Elphidium sp. 24 Elphidium sp.

25 Buccella sp. 25 Buccella sp. 25 Melonis sp. 25 Elphidium sp. 25 Elphidium sp.

26 Buccella sp. 26 Buccella sp. 26 Melonis sp. 26 Elphidium sp. 26 Elphidium sp.

27 Buccella sp. 27 Buccella sp. 27 Melonis sp. 27 Elphidium sp. 27 Elphidium sp.

28 Buccella sp. 28 Buccella sp. 28 Melonis sp. 28 Elphidium sp. 28 Elphidium sp.

29 Buccella sp. 29 Buccella sp. 29 Melonis sp. 29 Elphidium sp. 29 Elphidium sp.

30 Buccella sp. 30 Buccella sp. 30 Melonis sp. 30 Elphidium sp. 30 Elphidium sp.

31 Buccella sp. 31 Buccella sp. 31 Melonis sp. 31 Elphidium sp. 31 Elphidium sp.

32 Buccella sp. 32 Buccella sp. 32 Melonis sp. 32 Elphidium sp. 32 Elphidium sp.

33 Buccella sp. 33 Buccella sp. 33 Melonis sp. 33 Elphidium sp. 33 Elphidium sp.

34 Buccella sp. 34 Buccella sp. 34 Melonis sp. 34 Elphidium sp. 34 Elphidium sp.

35 Buccella sp. 35 Buccella sp. 35 Melonis sp. 35 Elphidium sp. 35 Elphidium sp.

36 Buccella sp. 36 Buccella sp. 36 Melonis sp. 36 Elphidium sp. 36 Haynesina sp. 

37 Buccella sp. 37 Buccella sp. 37 Melonis sp. 37 Elphidium sp. 37 Haynesina sp. 

38 Buccella sp. 38 Buccella sp. 38 Melonis sp. 38 Elphidium sp. 38 Haynesina sp. 

39 Buccella sp. 39 Buccella sp. 39 Melonis sp. 39 Elphidium sp. 39 Haynesina sp. 

40 Buccella sp. 40 Buccella sp. 40 Melonis sp. 40 Elphidium sp. 40 Cassidulina sp.

41 Buccella sp. 41 Buccella sp. 41 Melonis sp. 41 Elphidium sp. 41 Cassidulina sp.

42 Buccella sp. 42 Buccella sp. 42 Melonis sp. 42 Elphidium sp. 42 Bolivina sp.

43 Buccella sp. 43 Buccella sp. 43 Melonis sp. 43 Elphidium sp. 43 Haynesina sp. 

44 Buccella sp. 44 Buccella sp. 44 Haynesina sp. 44 Elphidium sp. 44 Haynesina sp. 

45 Buccella sp. 45 Buccella sp. 45 Haynesina sp. 45 Elphidium sp. 45 Haynesina sp. 

46 Buccella sp. 46 Buccella sp. 46 Haynesina sp. 46 Elphidium sp. 46 Haynesina sp. 

47 Buccella sp. 47 Buccella sp. 47 Haynesina sp. 47 Elphidium sp. 47 Melonis sp.

48 Buccella sp. 48 Buccella sp. 48 Haynesina sp. 48 Elphidium sp. 48 Melonis sp.

49 Buccella sp. 49 Buccella sp. 49 Haynesina sp. 49 Elphidium sp. 49 Melonis sp.

50 Buccella sp. 50 Buccella sp. 50 Haynesina sp. 50 Elphidium sp. 50 Haynesina sp. 

51 Buccella sp. 51 Buccella sp. 51 Haynesina sp. 51 Elphidium sp. 51 Haynesina sp. 

52 Buccella sp. 52 Buccella sp. 52 Haynesina sp. 52 Elphidium sp. 52 Haynesina sp. 

53 Buccella sp. 53 Buccella sp. 53 Haynesina sp. 53 Elphidium sp. 53 Buccella sp. 

54 Buccella sp. 54 Buccella sp. 54 Haynesina sp. 54 Elphidium sp. 54 Buccella sp. 

55 Buccella sp. 55 Buccella sp. 55 Haynesina sp. 55 Elphidium sp. 55 Buccella sp. 

56 Buccella sp. 56 Buccella sp. 56 Haynesina sp. 56 Elphidium sp. 56 Buccella sp. 

57 Buccella sp. 57 Buccella sp. 57 Haynesina sp. 57 Elphidium sp. 57 Buccella sp. 

58 Buccella sp. 58 Buccella sp. 58 Haynesina sp. 58 Elphidium sp. 58 Buccella sp. 

59 Buccella sp. 59 Buccella sp. 59 Haynesina sp. 59 Elphidium sp. 59 Buccella sp. 

60 Buccella sp. 60 Buccella sp. 60 Haynesina sp. 60 Elphidium sp. 60 Buccella sp. 

77



Table A.13 Sample #10 0-0.5 cm

AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus AMNH # Sample # Genus

108527 1 Cibicides sp. 108528 1 Cibicides sp. 108529 1 Cassidulina sp. 108530 1 Elphidium sp. 108531 1 Elphidium sp.

2 Cibicides sp. 2 Buccella sp. 2 Cassidulina sp. 2 Elphidium sp. 2 Cibicides sp.

3 Cibicides sp. 3 Buccella sp. 3 Cassidulina sp. 3 Elphidium sp. 3 Elphidium sp.

4 Cibicides sp. 4 Buccella sp. 4 Cassidulina sp. 4 Elphidium sp. 4 Cassidulina sp.

5 Cibicides sp. 5 Buccella sp. 5 Cassidulina sp. 5 Elphidium sp. 5 Cibicides sp.

6 Cibicides sp. 6 Buccella sp. 6 Cassidulina sp. 6 Elphidium sp. 6 Oolina sp.

7 Cibicides sp. 7 Buccella sp. 7 Cassidulina sp. 7 Elphidium sp. 7 Cibicides sp.

8 Cibicides sp. 8 Buccella sp. 8 Cassidulina sp. 8 Elphidium sp. 8 Elphidium sp.

9 Cibicides sp. 9 Buccella sp. 9 Cassidulina sp. 9 Elphidium sp. 9 Cibicides sp.

10 Cibicides sp. 10 Buccella sp. 10 Cassidulina sp. 10 Elphidium sp. 10 Haynesina sp. 

11 Cibicides sp. 11 Buccella sp. 11 Cassidulina sp. 11 Buccella sp. 11 Haynesina sp. 

12 Cibicides sp. 12 Buccella sp. 12 Cassidulina sp. 12 Buccella sp. 12 Fissurina sp.

13 Cibicides sp. 13 Buccella sp. 13 Cassidulina sp. 13 Cibicides sp. 13 Melonis sp.

14 Cibicides sp. 14 Buccella sp. 14 Cassidulina sp. 14 Buccella sp. 14 Fissurina sp.

15 Cibicides sp. 15 Buccella sp. 15 Cassidulina sp. 15 Cibicides sp. 15 Elphidium sp.

16 Cibicides sp. 16 Buccella sp. 16 Melonis sp. 16 Elphidium sp. 16 Elphidium sp.

17 Cibicides sp. 17 Buccella sp. 17 Melonis sp. 17 Cibicides sp. 17 Elphidium sp.

18 Cibicides sp. 18 Buccella sp. 18 Melonis sp. 18 Elphidium sp. 18 Elphidium sp.

19 Cibicides sp. 19 Buccella sp. 19 Melonis sp. 19 Cibicides sp. 19 Oolina sp.

20 Cibicides sp. 20 Buccella sp. 20 Melonis sp. 20 Cibicides sp. 20 Cibicides sp.

21 Cibicides sp. 21 Buccella sp. 21 Melonis sp. 21 Elphidium sp. 21 Buccella sp. 

22 Cibicides sp. 22 Buccella sp. 22 Melonis sp. 22 Elphidium sp. 22 Elphidium sp.

23 Cibicides sp. 23 Buccella sp. 23 Haynesina sp. 23 Melonis sp. 23 Fissurina sp.

24 Cibicides sp. 24 Buccella sp. 24 Haynesina sp. 24 Fissurina sp. 24 Haynesina sp. 

25 Cibicides sp. 25 Buccella sp. 25 Haynesina sp. 25 Elphidium sp. 25 Hoeglundina sp.

26 Cibicides sp. 26 Buccella sp. 26 Haynesina sp. 26 Cibicides sp. 26 Cibicides sp.

27 Cibicides sp. 27 Buccella sp. 27 Haynesina sp. 27 Elphidium sp. 27 Cassidulina sp.

28 Cibicides sp. 28 Buccella sp. 28 Haynesina sp. 28 Cassidulina sp. 28 Elphidium sp.

29 Cibicides sp. 29 Buccella sp. 29 Haynesina sp. 29 Elphidium sp. 29 Hoeglundina sp.

30 Cibicides sp. 30 Buccella sp. 30 Haynesina sp. 30 Fissurina sp. 30 Fissurina sp.

31 Cibicides sp. 31 Buccella sp. 31 Haynesina sp. 31 Nonionellina sp. 31 Melonis sp.

32 Cibicides sp. 32 Buccella sp. 32 Haynesina sp. 32 Hoeglundina sp. 32 Elphidium sp.

33 Cibicides sp. 33 Buccella sp. 33 Haynesina sp. 33 Elphidium sp. 33 Oolina sp.

34 Cibicides sp. 34 Buccella sp. 34 Haynesina sp. 34 Cibicides sp. 34 Haynesina sp. 

35 Cibicides sp. 35 Buccella sp. 35 Haynesina sp. 35 Melonis sp. 35 Cassidulina sp.

36 Cibicides sp. 36 Buccella sp. 36 Haynesina sp. 36 Pullenia sp. 36 Elphidium sp.

37 Cibicides sp. 37 Buccella sp. 37 Haynesina sp. 37 Haynesina sp. 37 Elphidium sp.

38 Cibicides sp. 38 Buccella sp. 38 Haynesina sp. 38 Cassidulina sp. 38 Cassidulina sp.

39 Cibicides sp. 39 Buccella sp. 39 Haynesina sp. 39 Elphidium sp. 39 Cibicides sp.

40 Cibicides sp. 40 Buccella sp. 40 Haynesina sp. 40 Elphidium sp. 40 Buccella sp. 

41 Cibicides sp. 41 Hoeglundina sp. 41 Haynesina sp. 41 Buccella sp. 41 Elphidium sp.

42 Cibicides sp. 42 Hoeglundina sp. 42 Elphidium sp. 42 Melonis sp. 42 Cassidulina sp.

43 Cibicides sp. 43 Hoeglundina sp. 43 Elphidium sp. 43 Elphidium sp. 43 Elphidium sp.

44 Cibicides sp. 44 Hoeglundina sp. 44 Elphidium sp. 44 Elphidium sp. 44 Fissurina sp.

45 Cibicides sp. 45 Hoeglundina sp. 45 Elphidium sp. 45 Cibicides sp. 45 Elphidium sp.

46 Cibicides sp. 46 Hoeglundina sp. 46 Elphidium sp. 46 Melonis sp. 46 Elphidium sp.

47 Cibicides sp. 47 Hoeglundina sp. 47 Elphidium sp. 47 Elphidium sp. 47 Buccella sp. 

48 Cibicides sp. 48 Hoeglundina sp. 48 Elphidium sp. 48 Elphidium sp. 48 Buccella sp. 

49 Cibicides sp. 49 Hoeglundina sp. 49 Elphidium sp. 49 Elphidium sp. 49 Cibicides sp.

50 Cibicides sp. 50 Hoeglundina sp. 50 Elphidium sp. 50 Elphidium sp. 50 Elphidium sp.

51 Cibicides sp. 51 Hoeglundina sp. 51 Elphidium sp. 51 Elphidium sp. 51 Elphidium sp.

52 Cibicides sp. 52 Hoeglundina sp. 52 Elphidium sp. 52 Haynesina sp. 52 Haynesina sp. 

53 Cibicides sp. 53 Hoeglundina sp. 53 Elphidium sp. 53 Cibicides sp. 53 Buccella sp. 

54 Cibicides sp. 54 Hoeglundina sp. 54 Elphidium sp. 54 Cibicides sp. 54 Cibicides sp.

55 Cibicides sp. 55 Hoeglundina sp. 55 Elphidium sp. 55 Melonis sp. 55 Cibicides sp.

56 Cibicides sp. 56 Cassidulina sp. 56 Elphidium sp. 56 Cibicides sp. 56 Cibicides sp.

57 Cibicides sp. 57 Cassidulina sp. 57 Elphidium sp. 57 Melonis sp. 57 Cibicides sp.

58 Cibicides sp. 58 Cassidulina sp. 58 Elphidium sp. 58 Cibicides sp. 58 Cibicides sp.

59 Cibicides sp. 59 Cassidulina sp. 59 Elphidium sp. 59 Cibicides sp. 59 Cibicides sp.

60 Cibicides sp. 60 Cassidulina sp. 60 Elphidium sp. 60 Cibicides sp. 60 Cibicides sp.
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Buccella sp.
Plate 2.
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Elphidium sp.
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Melonis sp.
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Haynesina sp. & Hoeglundina sp.
Plate 5.
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Cassidulina sp. & Fissurina sp.
Plate 6.
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Oolina sp. & Pullenia sp.
Plate 7.
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Lagena sp., Trifarina sp, & Triloculina sp.
Plate 8.
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Nonionellina sp, Bolivina sp., & Quinqueloculina sp.
Plate 9.
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