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ABSTRACT

When attempting to understand a species’ distribution, knowing how many collections should be surveyed to achieve
an adequate sample (exhaustiveness) is important. A test for exhaustiveness using species distribution models created
with Diva-GIS was performed on county level locality information recorded from more than 4,900 specimens of
Thoracophorus costalis Erichson (Staphylinidae: Osoriinae) borrowed from 38 collections. Size and location of distribu-
tion models based on specimens from single collections varied greatly, indicating “collection bias.” At least 15 collec-
tions needed to be combined before the resultant model averaged 90% of the area of a reference model created from all
available specimens. By themselves, alternative distribution data from literature, Bugguide.net, and GBIF.org performed
poorly, resulting in models with less than 15% the area of the reference model. Comments on the use of online data, the
importance of maintaining and growing regional collections, and the future of natural history collections are included.

Key Words: biogeography, predictive modeling, niche modeling, rove beetles, furrowed rove beetle, landscape ecology,
gamma distributions

We've learned from experience that the truth declare the exercise good and done continues to

will out. Other experimenters will repeat be an unending topic of gleeful debate (for recent

your experiment and find out whether you were examples, see Lujan and Page 2015 and Rocha
wrong or right. Nature’s phenomena will agree et al. 2014 and associated papers).

or they’ll disagree with your theory. And, although Specimens housed in natural history collections

you may gain some temporary fame and excitement, are important for, among other things, understand-

you will not gain a good reputation as a scientist ing the distribution of a particular species. The

if you haven’t tried to be very careful in this kind importance of any given specimen is difficult to

of work. And it’s this type of integrity, this kind of determine because records represent spatial as well

care not to fool yourself, that is missing to a large as biotic information. For example, a forest dwell-

extent in much of the research in Cargo Cult Science. ing species collected in a forest 50 km farther west

-Richard Feynman (1974) than the species has previously been reported
represents a spatial range extension, while a speci-

Natural history collections of today evolved from men from a nearby prairie indicates a biotic range
“wunderkammer” of the 16™ century. Modern col- extension and may be more important to the over-
lections are still “cabinets of curiosities” but are also all understanding of the species’ distribution.
considered “Mission-Critical Infrastructure” (NSTC Therefore, number of specimens or number of
2009) and are the subject of a plethora of publica- localities are, by themselves, poor indicators of
tions describing their importance and mainte- whether a given data set will provide an accurate
nance, including a 2400+ page “handbook” by the representation of a species’ overall distribution.
US National Park Service (NPS 2006). Whether When determining a species’ distribution,
to continue growing natural history collections or researchers should examine as many specimens
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as possible to confirm identifications and locality
data. When trying to deduce if specimens of a
particular species will be present before requesting
loans or personally visiting collections, researchers
judge natural history collections informally based
on the collection’s location, age, quantity of speci-
mens, taxonomic emphasis, efc. However, within
the holdings of a collection that does contain the
desired species, potential variation of distribution
(or phenology, morphology, genetics, etc.) of that
species is difficult to surmise.

Natural history collections represent a functional
“natural unit” of specimens, because: 1) curators
tend to database or loan all specimens of a particu-
lar species they are aware they have; 2) specimens
are generally exclusive to a single collection; and
3) researchers use all the data they get from a col-
lection. From a practical standpoint, an investigator
conducting research on a particular species does
not gather data on an arbitrary number of speci-
mens but rather assembles data from the holdings
of discrete collections. Little guidance, other than
intuition, is available when attempting to judge
the exhaustiveness (i.e., proportion of information
compiled, Hortal ef al. 2007) of data accumulation
for any given species. When attempting to under-
stand a given attribute of a species, such as distri-
bution, phenology, genetic variation, efc., knowing
how many collections should be surveyed is more
important than the predetermined number of speci-
mens examined to achieve an adequate sample but
not waste resources by going beyond a point of
diminishing returns.

Species distribution modeling, also referred to
as species habitat modeling, environmental niche
modeling, efc., overlays specimen locality informa-
tion on environmental variables to create a pre-
diction of a species’ full distribution (Elith and
Leathwick 2009). Models can vary based on tech-
nique, such as regression or machine learning, and
variables used, such as various aspects of climatic
data, spatial scales, species interactions, availability
of food/resources, dispersal ability, and use of
presence/absence or presence only data (Newbold
2010). When variables are held constant, species
distribution models should be able to provide stan-
dardized comparisons of distributional data among
natural history collections.

During compilation of an updated distribution of
the furrowed rove beetle, Thoracophorus costalis
Erichson (Staphylinidae: Osoriinae), the first
author reviewed 4,926 specimens from 38 collec-
tions and compiled the most comprehensive
collection of distributional data for the species to
date (Ferro 2015). The resultant data set allowed
for a case study evaluating how the model of a
species’ distribution was affected by the number
of collections surveyed, and how it compared to

models created solely from literature records and
online databases.

MATERIAL AND METHODS

Adult specimens of T. costalis were examined
from the following institutions. Collections and their
acronyms are from Evenhuis (2014). Collection
managers and curators are indicated.

BYUC  Monte L. Bean Life Science Museum,
Brigham Young University (Provo, UT,
USA; Shawn Clark).

California Academy of Sciences (San
Francisco, CA, USA; Norman Penny).
Canadian National Collection of Insects
(Ottawa, ON, Canada; Patrice Bouchard).
California State Collection of Arthropods
(Sacramento, CA, USA; Jacqueline
Kishmirian-Airoso).

Colorado State University (Fort Collins,
CO, USA; Boris Kondratieff).
Clemson University (Clemson, SC,
USA; Michael Caterino).

Cornell University (Ithaca, NY, USA;
Jason Dombroskie).

Essig Museum of Entomology, Univer-
sity of California (Berkeley, CA, USA;
Cheryl Barr and Peter Oboyski).
Field Museum of Natural History
(Chicago, IL, USA; James Boone).
Florida State Collection of Arthropods,
Division of Plant Industry (Gainesville,
FL, USA; Paul Skelley).

The University of lowa Museum of
Natural History (Iowa City, 1A, USA;
Elizabeth Fouts, Cindy Opitz).
Illinois Natural History Survey
(Champaign, IL, USA; Jamie Zahniser).
Kyle Schnepp personal collection
(Gainesville, FL, USA; Kyle Schnepp).
Louisiana State Arthropod Museum,
Louisiana State University (Baton
Rouge, LA, USA; Victoria Bayless).
Museum of Comparative Zoology,
Harvard University (Cambridge, MA,
USA; Rachel Hawkins).

Mississippi State University (Starkville,
MS, USA; Terence Schiefer).

Michigan State University (East Lansing,
ML, USA; Anthony Cognato, Gary Parsons).
Montana State University (Bozeman,
MT, USA; Michael Ivie).

North Carolina State University Insect
Collection (Raleigh, NC, USA; Bob Blinn).
Oklahoma Museum of Natural History,
University of Oklahoma (Norman, OK,
USA; Katrina Menard).

CAS

CNC

CSCA

CSuC

CUAC

CUIC

EMEC

FMNH

FSCA

ICUI

INHS

KSPC

LSAM

MCZ

MEM

MSUC

MTEC

NCSU

OMNH
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OsucC C. A. Triplehorn Insect Collection,
Ohio State University (Columbus, OH,
USA; Luciana Musetti).

Peabody Museum of Natural History,
Yale University (New Haven, CT,
USA; Lawrence F. Gall).

Snow Entomological Museum, Univer-
sity of Kansas (Lawrence, KS, USA;
Zachary Falin).

Texas A & M University (College Station,
TX, USA; Ed Riley).

The Arthropod Museum, Department
of Entomology, University of Arkansas
(Fayetteville, AR, USA; Jeffrey K. Barmnes).
E. H. Strickland Entomological Museum,
University of Alberta (Edmonton, AB,
Canada; Danny Shpeley).

R. M. Bohart Museum of Entomology,
University of California (Davis, CA,
USA; Lynn Kimsey).

University of Central Florida (Orlando,
FL, USA; Sandor Kelly).

University of Connecticut (Storrs, CT,
USA; Jane O’Donnell).

Entomology Research Museum, Depart-
ment of Entomology, University of
California (Riverside, CA, USA; Doug
Yanega).

University of Georgia (Athens, GA,
USA; E. Richard Hoebeke).

W. R. Enns Entomology Museum,
University of Missouri (Columbia,
MO, USA,; Kristin Simpson).
University of Minnesota (St. Paul, MN,
USA; Robin Thomson).

University of New Hampshire (Durham,
NH, USA; Donald Chandler).

Virginia Museum of Natural History
(Martinsville, VA, USA; Nancy Moncrief).
W. F. Barr Entomological Collection,
University of Idaho (Moscow, ID, USA;
Frank Merickel).

University of Wisconsin Insect Research
Center, Department of Entomology, Uni-
versity of Wisconsin (Madison, WI,
USA,; Steven Krauth).

Maurice T. James Entomological Col-
lection, Washington State University
(Pullman, WA, USA; Richard Zack).

PMNH

SEMC

TAMU

UAAM

UASM

ucCDC

UCFC
UCMS

UCRC

UGCA

UMRM

UMSP
UNHC
VMNH

WFBM

WIRC

WSU

For specimens examined, county or county
equivalents (hereafter referred to as county) were
recorded when provided, or when the county could
be reasonably inferred from other locality infor-
mation such as city and state. Specimens with
inadequate locality information were excluded
from analysis, e.g. “Ill.”. A single point at the
center of each county was mapped based on coor-

dinates provided on respective pages available at
www.wikipedia.org. Thoracophorus costalis is
known only from the US and Canada, except for
a single specimen from Mexico (MCZ), the label
reading in full: “Mex.”, which is not included in
this analysis. Therefore, the data used represent
the species’ entire range as is currently known.

Alternative distribution data for T. costalis were
taken from three sources. Occurrence data were
downloaded from Global Biodiversity Informa-
tion Facility (GBIF 2015) on 25 January 2015. Data
from GBIF consisted of 142 records, all from SEMC,
and were used as-is. County level distribution was
recorded for images on BugGuide (2015) on 25 Jan-
uary 2015 and consisted of 14 specimens represent-
ing 13 counties. BugGuide data were mapped as
above. State level distribution data (five localities:
CT, FL, IN, MD, NJ) were taken from Downie and
Arnett (1996) and mapped by selecting coordinates
at a single location in the center of each state.

Distribution modeling was performed using the
program DIVA-GIS (Hijmans et al. 2012), version
7.5.0.0. Global climate layers came from www.
worldclim.org: generic grids; 30 seconds resolu-
tion; Bioclim 1-18 (Hijmans et al. 2005). Models
were created using the Ecological Niche Modeling
function in DIVA-GIS with the following para-
meters: Output Grid Dimensions MinX —130°,
MaxX —50°, MinY 20°, MaxY 60°; Bioclim
variables selected 1 (annual mean temperature),
3 (isothermality), 4 (temperature seasonality),
7 (temperature annual range), 12 (annual precipita-
tion), 15 (precipitation seasonality); Bioclim as
output variable; all other options default. The
model was evaluated in DIVA-GIS by creating a
receiver operating characteristic (ROC) curve
using 75% of the localities as “training” data.
The quality of the model’s prediction was qualified
by calculating the area under the curve (AUC) of
the ROC, where values range from 0.5, indicating
the model is no better than random, to 1 where the
model has maximum accuracy; values greater than
0.9 represent ‘high accuracy’ (Swets 1988).

All available data from specimens examined (38
collections, 464 counties, 610 collection-county
records) were combined to create a single reference
model of 7. costalis distribution against which all
other models were compared. Comparisons among
models were based on area of projected distribu-
tion only, regardless of the geographic coverage
of the model—greater area of individual models
equaled greater similarity to the reference model.
Distribution area included all suitable prediction
levels, from Low to Excellent, and was calculated
using the Analyze: Measure function in the pro-
gram ImageJ (Rasband 2014) for all models.

Rarefaction was used to study the effect of
number of collections on the distribution model.
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For each possible non-total number of collections
(1-37) 20 sets (without resampling) were ran-
domly created using the program R version 3.3
(R Core Team 2014), e.g., 20 sets of 17 randomly
selected collections, efc. Distribution models were
generated for each set and total area of the dis-
tribution of each model was calculated (740 total).
The average and 95% confidence interval of the
mean of model area for each set were calculated
using R (R Core Team 2014). A logistic regression
was fit to the logistic curve data and used to predict
mean number of collections necessary to achieve
90% of the reference distribution.

Rarefaction was used to study the effect of
number of localities on the distribution model to
test for bias of model area within individual col-
lections. From the set of combined data (unique
localities only), 20 sets (without resampling) of
3,5, 10, 25, 50, 100, 150, 200, 250, and 300
random specimen localities were selected. Dis-
tribution models were generated for each set and
total area of the distribution of each model was
calculated (200 total). Results with 95% confi-
dence intervals of the mean were graphed. If
models generated by individual collection holdings
behaved the same as the entire data set, they should
fall on or near the line created by the random
model area distribution. Collections that fall below
the line have specimens that result in a smaller
than expected model (clumped) in relation to the
number of localities, while collections that fall
above the line have specimens that result in a larger
than expected model (dispersed).

REsurrs

The reference model matched the known distri-
bution of 7. costalis closely, with the exception of
extreme northeastern North America, western
Texas, and the mountainous regions in the western
US and Canada (Fig. 1). Lack of specimens from
those areas may be the result of poor collecting
effort, suitable but inaccessible habitat for T costalis
(especially in the mountainous west), or errors in
the model. The model does project T. costalis dis-
tribution into Mexico, a prediction supported by
the MCZ specimen. The AUC value for the refer-
ence model (75% data used) was 0.910, which indi-
cated the model was highly accurate (Swets 1988).
Opverall, the model parameters appeared to be satis-
factory to produce comparative distributions for
this research.

Three collections had specimens from only a
single county and failed to produce a distribution
model (Table 1). Area of distribution models of
other collections were generally small compared
to the reference model: 18 individual collections
covered less than 10%; 13 collections covered

10-50%; and only three covered more than 50%
(Table 1; Figs. 2—4, 9). Alternative distribution
data resulted in models that ranged 8.5-14.1% of
the area of the reference model (Table 1; Figs. 68,
9). An argument could be made that most collec-
tions surveyed could have been ignored because
of poor contribution to the overall model. How-
ever, this ex post facto reasoning fails to take into
account that the contribution of any given collec-
tion is unknown before it is “observed”, and once
observed, the data may as well be used.

The average area of distribution models from
single collections was significantly lower than
models resultant from two collections combined
(Fig. 10). Alternative distribution data resulted in
models with areas indistinguishable from single
collections: Downie and Arnett (1996), 8.53%;
BugGuide, 11.88%; and GBIF, 14.05% (Table 1;
Fig. 10). At least five combined collections were
needed to produce a model that averaged greater
than 50% the reference model area, and 15 collec-
tions were necessary to create a model with 90% of
the reference model area. The curve reached an
asymptote beginning at 15 and stabilized at 25 col-
lections (Fig. 10).

In total, 250 localities randomly selected from
the combined data were needed to create a model
that averaged 90% the area of the reference model
(464 localities) (Fig. 11). Note that localities, not
specimens, were used, and the localities came from
the entire data set. Most tests of sample size on
model accuracy pull samples from an entire data
set (Carroll and Pearson 1998; Cumming 2000;
Stockwell and Peterson 2002; Hernandez et al.
2006). However, in this example most individual
collections fell below the curve and exhibited a
“clumped” bias, and only two collections were
appreciably above it, showing a “dispersed” bias.
Therefore, tests of sample size on random subsets
of individual collections would have perpetuated
the bias of that collection.

Absolute number of localities (or specimens)
(Fig. 11) was a poor measure when predicting
accuracy of the resultant model. The GBIF data
exhibited a clumped bias and had a high number
of “localities” compared to other sources, because
data were used as-is and “localities” represented
individual specimens. The CNC data included 42
localities and created a model with 75% of the
reference area, while FMNH had nearly three times
the number of localities (123) but produced a
model only two-thirds the size (52%) (Fig. 11).

Discussion

Collection Bias. Variation in model area among
collections (Table 1) shows that “collection bias”
can be large and may eclipse smaller scale biases.
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Figs. 1-8. Exemplar distribution models. Red circles = specimen localities (county-level). 1) Reference model
created using all specimen records. Insert: Thoracophorus costalis; 2) University of Wisconsin Insect Research Center,
4.4% reference area; 3) Mississippi State University, 11.9% reference area; 4) Florida State Collection of Arthropods, 28.9%
reference area; 5) Canadian National Collection of Insects, 75.5% reference area, greatest of any single collection; 6) Downie
and Armett (1996), 8.5% reference area; 7) Bugguide.net, 11.9% reference area; 8) GBIF.org, 14.1% reference area.


http://www.Bugguide.net
http://www.GBIF.org

420

Table 1.

(see text for collections designated by codens). * = alternative distribution data.
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Number of specimens (# spec.), counties (# Co.), and percent model area (Model %) for each collection

Collection # spec. # Co. Model % Collection # spec. # Co. Model %
BYU 1 1 0 GMNH 52 8 7.80
OMNH 5 1 0 *DA1996 NA 5 states 8.53
UIMNH 2 1 0 osucC 27 7 11.23
PMNH 6 2 <0.01 TAMU 159 16 11.71
ucDC 4 3 <0.01 *BugGuide 14 13 11.88
UCFC 4 2 0.01 MEM 171 47 11.92
UCMS 2 2 0.03 UASM 8 4 13.33
WSU 27 3 0.03 *GBIF.org 142 NA 14.05
CsucC 3 2 0.09 NCSU 223 14 14.36
EMEC 5 2 0.15 LSAM 1,553 40 19.42
WFBM 4 2 0.16 INHS 175 28 19.97
CSCA 45 6 0.28 UAAM 323 50 21.73
VMNH 15 7 0.52 UNHC 65 23 25.32
UMRM 22 6 0.53 FSCA 119 22 28.93
UMSP 23 3 0.69 CUIC 114 11 30.53
MTEC 13 3 221 SEMC 198 45 30.58
UCR 13 7 2.83 CAS 59 15 33.93
KSPC 9 6 3.47 FMNH 1,023 123 52.49
WIRC 28 11 4.40 MCZ 172 28 54.24
CUAC 10 6 456 CNC 192 42 75.48
MSUC 52 11 6.70 All Collections 4,926 464 100.00

Within species distribution modeling literature,
examples of sample bias include biases at the scale
of the specimen: spatial, temporal, environmental,
and taxonomic (Graham et al. 2004; Newbold
2010). For example, Kadmon et al. (2004) found
that collection localities tended to be near roads.
Data users that are not familiar with the practical
patchiness of specimens and data from natural
history collections may fail to recognize larger scale
bias inherent to holdings of a particular collection,
such as locality, age, size, and history.

A wide variety of reasonable models could have
been created with the data—species distribution
modeling is a growing, changing subject. The scale
of variation among models due to “museum bias”
was, in some cases, almost certainly larger than
variation due to other possible model creation pro-
tocols. Future researchers should incorporate num-
ber of collections (in additional to number of
specimens) into tests of model accuracy.

Exhaustiveness. The relationship between the
number of collections surveyed (exhaustiveness)
and the area of the distribution model is interesting
because 1) at least... and 2) only 15 collections
had to be surveyed before a reasonable model
(90% reference model) of the distribution of
T. costalis could be created. The high number of col-
lections needed indicates the importance of maintain-
ing many regional natural history collections—each
collection added unique information to the model
(although some information became redundant as

more collections were added) and reduced overall
museum bias.

The relatively low number of collections needed,
15 out of 38 that contributed data, indicates that,
for some species, adequate large scale distributional
data may already exist. However, locality data are
available for nearly all specimens in collections.
When surveying other attributes, such as pollen
on specimens, gut content, or genetic variability,
fewer specimens may contribute data. In that case,
more collections may need to be surveyed before an
adequate amount of information is obtained.

Ray’s Rule of Precision: Measure with a
micrometer. Mark with chalk. Cut with an axe.
Global Biodiversity Information Facility (GBIF) is
currently a major compilation of biodiversity data.
The compilers claim to host the “biggest biodiver-
sity database on the Internet,” having compiled
more than 500 million records over 1.5 million
species and contributed to over 1,000 peer-
reviewed publications (www.gbif.org/whatisgbif).
Data from GBIF have been used in publications
on endangered species conservation (e.g., Mota-
Vargas and Rojas-Soto 2012) and the impact of
climate change (e.g., Hof et al. 2012), both contro-
versial subjects.

Despite criticism over data quality (Graham et al.
2004; Yesson et al. 2007; Beck et al. 2013), only one
cautionary statement on only one page concerning
data quality is provided by GBIF: “The quality and
completeness of data cannot be guaranteed. Users
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Fig. 9. Percentage of the reference area for each model created from individual collection data (see text for collec-
tions designated by codens). Bars for alternative data sources and total have tile fill. ** = collections with individually

less than 1% of the reference model area.

employ these data at their own risk.” (www.gbif.org/
terms/licences/data-use). Two excellent resources
(Chapman 2005a, b) concerning specimen-level data
quality are hosted by GBIF, but both are more appro-
priate for data contributors than data users (www.gbif.
org/resources/for-users). Otherwise, the site is largely
self-promoting and lacks the skepticism and caution
expected from a scientific resource. Other aggregator
sites provide cautionary statements and even entire
sections on their reliability. Bugguide.net states the
following above every range map: “The information
below is based on images submitted and identified
by contributors. Range and date information may
be incomplete, overinclusive, or just plain wrong.”
Wikipedia maintains a page on its reliability (en.
wikipedia.org/wiki/Reliability of Wikipedia).
Online databases offer an opportunity for naive
or lethargic researchers to quickly produce poor
quality research with little effort. Some researchers
even justify immediate use of available data with
the sentiment, “We cannot wait indefinitely for

better information, but must use the knowledge
that we already have.” (Newbold 2010). For this
research, it took less time to download GBIF data
for T. costalis than it did to write an email request-
ing a loan from a museum, and it took less time to
create the species distribution model than it took to
confirm the identification of the requested speci-
mens. Once a model is created, many measures
exist to test its accuracy (e.g., Liu ef al. 2011 offer
30 accuracy measures), which, to naive researchers
or inattentive reviewers, may provide a false sense
of quality control.

Computers allow for incredibly fast data manip-
ulation, and many researchers may feel that they
can, or are expected to, perform research at a pro-
portional speed. Ecological studies involving tens,
hundreds, or thousands of species would never be
completed if every species were addressed at a
critical level. For example, researchers estimating
average change in distribution of North American
insects due to climate change need never look at
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model is represented by a black dot at 38 collections = 100% area.

the species list, just simply download data and
run models. To be fair, checking data quality and
exhaustiveness should not rest entirely on the shoul-
ders of data users. To quote Soberén and Peterson
(2004), “without a strong and active taxonomic
community, BI [Biodiversity Informatics] will never
be more than a clever set of software tools lacking
a substantial factual basis.”

The expectation of model creators and users that
the data they are using will meet a minimum level
of quality is not inappropriate. Our understanding
of where a species is found will certainly change,
and hopefully improve, over time. However, some
minimum level of quality should be expected,
otherwise research results will be worse than
non-existent, they will be wrong. Research com-
menting on endangered species, conservation strat-
egies, and climate change is especially important
and especially controversial. Every effort should
be made to assure the primary data used are of the
utmost quality. If data quality and cleaning are the
responsibility of the data custodian (Chapman
2005a, b), then providing a measure of data quality
and exhaustiveness should be the responsibility of
the data purveyor.

The “Digital” Museum: Beyond GBIF.org.
Technological advances, especially the Internet,
have spurred institutions to “digitize” holdings of

natural history collections. In this sense, “digitize”
refers to the creation of specimen-level databases
that include traditional “label data” such as date,
locality, and collector, and a taxonomic identifier,
such as family, genus, or species. Sadly, parallel
funding for confirmation of specimen identification
and/or continued identification of specimens to lower
taxonomic levels, particularly species, has not been
included in the digitization zeitgeist. The culmina-
tion of “digitization” is websites such as GBIF.org
that aggregate specimen data for use by researchers.
Creation of these databases is time-consuming and
costly and will not be completed any time soon
(~1,500 years, Blagoderov et al. 2012).

In his famous essay, The Tragedy of the Commons,
Garrett Hardin (1968) suggested the issue of over-
population fell into a special class of human related
dilemmas he called “no technical solution problems.”
His contention was that some problems faced by
humanity could not be solved by technology, but only
by changes in human behavior. Natural history col-
lections face two dilemmas for which there is “no
technical solution.” Both problems are known but
have not been properly classified, making discovery
of a solution particularly difficult.

Problem 1. Recently, data, sensu lato, have
become digital. Originally, data were married to a
physical medium (a cave wall, a scroll, a building,
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Fig. 11. Model area versus number of localities. Red circles = average and 95% confidence intervals of model areas
for each set of random localities. Green circles = individual collections. Blue triangles = alternative distribution data.

a book, magnetic tape, film, ezc.). Today, tech-
nological innovations have allowed information
to be independent of a specific physical scaffolding
(paper, film, efc.) and exist in a digital format that
can be realized using general equipment (compu-
ters, monitors, speakers, efc.). Cost of resources
(time, space, money, manpower, efc.) to store,
reproduce, transport, acquire, efc. these materials
have been reduced dramatically.

The first problem natural history collections
face is the expectation that all types of data can
be digitized. Currently, select aspects of natural
history collections are being digitized: databases
with specimen-level collection information, photo-
graphs with morphological information, micro-CT
scans with internal and external morphology, audio
recordings of vocalizations, genetic code, etc.
Museums and researchers are profiting from the
increased efficiency associated with digitizing this
information. But can a natural history specimen,
and therefore an entire collection, be completely
digitized? Stated another way, can all there is to
know about a given specimen be captured, can that
information be stored in an electronic format, and
the specimen (and eventually the entire collection)
be discarded without discarding any information?

The answer is probably yes—no laws of physics
would have to be broken to “record” all the infor-

mation a specimen contains, but that is certainly
well outside of our current or even near-future
technological sophistication. The expectation that
natural history collections can be digitized—the
specimens discarded like old journals with no
meaningful information lost—cannot be met. As
such, natural history collections engage in at least
three activities that must continue to physically
take place (i.e., cannot be fully digitized): acquisi-
tion of specimens, retention of specimens, and
lending of specimens (including collection visi-
tation, which can provide valuable results, see
Chatzimanolis 2014).

Non-digitizable data, other than natural history
collections, include original artwork, original and
historic documents, anthropological artifacts,
architecture, and live cultures. If maintained, all
of the above represent long-term, multigenerational
resources that accrue in value over time. Interest-
ingly, with the exception of natural history collec-
tions, few critics seriously advocate discarding the
above items, even when suitable reproductions can
be made, despite the fact that maintenance of
originals can be costly.

Problem 2. Creation, maintenance, and growth
of natural history collections is nearly always jus-
tified for utilitarian (often economic) reasons (e.g.,
Suarez and Tsutsui 2004). The argument is that
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information from the collection: 1) is currently
helping to solve human-related problems; or
2) may help solve unknown problems in the future.
However, those arguments fail to recognize that
discovery and exploration of the natural world is
a part of the human condition, whether it has a
utilitarian use or not. Historically, “explorers” and
“discoverers” visited new geographic regions, but
as the map was filled in, modern discoverers
shifted their focus and began to explorer the uni-
verse at different scales of space and time or began
to explore emergent properties of combined sys-
tems. Exploration, along with sports, music, and
art, belongs to a class of human activities that
represent “endeavors without end.”

The second problem natural history collections
face is the impression that building a natural his-
tory collection will come to an end, that the collec-
tion can be “finished.” Natural history collections
are the product of exploration at a smaller scale—
discovering mites instead of mountains—and
provide base material for the study of systems,
such as ecology or mineralogy. The notion that
growth of natural history collections will some
day be “finished” is as nonsensical as the notion
that the need to have children, make music, be
entertained, or conduct scientific inquiry will be
“finished.” Policies such as strategic planning for
the future and institutional goal-setting should
recognize the “endeavor without end” qualities of
natural history collections.

CONCLUSION

Thoracophorus costalis is not rare or difficult to
collect. Rather, it is a widespread generalist that is
commonly collected using a dozen techniques, is
available throughout the year, is easily recognized
by researchers, and is distributed throughout east-
ern North America (Ferro 2015), a well-surveyed
region. Despite or because of this, specimens from
at least 15 collections had to be surveyed before a
reasonable distribution model (90% total reference)
could be created. “Collection bias” greatly affected
area of distribution of models, and in this case
study number of collections was a better measure
of exhaustiveness than number of specimens or
localities. Therefore, maintenance and growth of
numerous, regional natural history collections is
important. Online databases are important
resources but currently offer opportunities for
researchers to unexpectedly obtain poor or incom-
plete data. Quality control and adequate warnings
should be initiated or else inappropriate data usage
by some could call into question research con-
ducted by all. Growth and maintenance of natural
history collections is an essential and enduring
aspect of human endeavors.

ACKNOWLEDGMENTS

We thank the curators, collection managers, and
others that assisted in the loan of specimens. We
thank Rachel Hawkins and Phil Perkins for help
with “rediscovery” of the “lost” Mexican specimen
of T. costalis. We thank Christopher Carlton and
two anonymous reviewers for reviewing this manu-
script. Partial funding for this research was made
possible by donations from backers to the project
“Lucid Key to Staphylinidae Subfamilies” posted
at Experiment.com (DOI: 10.18258/0674).

REFERENCES CITED

Beck, J., L. Ballesteros-Mejia, P. Nagel, and 1. J.
Kitching. 2013. Online solutions and the
‘Wallacean shortfall’: what does GBIF contribute
to our knowledge of species’ ranges? Diversity
and Distributions 19: 1043—1050.

Blagoderov, V., I. J. Kitching, L. Livermore, T. J.
Simonsen, and V. S. Smith. 2012. No specimen
left behind: industrial scale digitization of natural
history collections. Zookeys 209: 133-146.

BugGuide. 2015. Species Thoracophorus costalis.
bugguide.net/node/view/52017/bgimage (accessed
25 January 2015).

Carroll, S. S., and D. L. Pearson. 1998. The effects of
scale and sample size on the accuracy of spatial
predictions of tiger beetle (Cicindelidae) species
richness. Ecography 21: 401-414.

Chapman, A. D. 2005a. Principles of Data Quality,
version 1.0. Report for the Global Biodiversity
Information Facility, Copenhagen, Denmark.

Chapman, A. D. 2005b. Principles and Methods of
Data Cleaning — Primary Species and Species-
Occurrence Data, version 1.0. Report for
the Global Biodiversity Information Facility,
Copenhagen, Denmark.

Chatzimanolis, S. 2014. Darwin’s legacy to rove
beetles (Coleoptera, Staphylinidae): A new
genus and a new species, including materials
collected on the Beagle’s voyage. Zookeys 379:
29-41.

Cumming, G. S. 2000. Using between-model compari-
sons to fine-tune linear models of species ranges.
Journal of Biogeography 27: 441-455.

Downie, N. M., and R. H. Arnett, Jr. 1996. The
Beetles of Northeastern North America, 2 vols.
The Sandhill Crane Press, Gainesville, FL.

Elith, J., and J. R. Leathwick. 2009. Species dis-
tribution models: ecological explanation and pre-
diction across space and time. Annual Review
of Ecology, Evolution, and Systematics 40:
677-697.

Evenhuis, N. L. 2014. Abbreviations for insect and
spider collections of the world. hbs.bishopmuseum.
org/codens/codens-inst.html (accessed 30 Septem-
ber 2014).

Ferro, M. L. 2015. Review of the genus Thoracophorus
(Coleoptera: Staphylinidae: Osoriinae) in North
America north of Mexico, with a key to species.
The Coleopterists Bulletin 69(1): 1-10.


http://www.Experiment.com
http://dx.doi.org/10.18258/0674
http://www.bugguide.net/node/view/52017/bgimage
http://www.hbs.bishopmuseum.org/codens/codens-inst.html
http://www.hbs.bishopmuseum.org/codens/codens-inst.html

THE COLEOPTERISTS BULLETIN 69(3), 2015 425

GBIF. 2015. Occurrences of Thoracophorus costalis
(Erichson, 1840). www.gbif.org/occurrence/search?
taxon_key=4989463 (accessed 25 January 2015).

Graham, C. H., S. Ferrier; K. Huettman, C. Mortiz,
and A. T. Peterson. 2004. New developments in
museum-based informatics and applications in
biodiversity analysis. TRENDS in Ecology and
Evolution 19(9): 497-503.

Hardin, G. 1968. The tragedy of the commons. Science
162: 1243-1248.

Hernandez, P. A., C. H. Graham, L. L. Master, and
D. L. Albert. 2006. The effect of sample size
and species characteristics on performance of dif-
ferent species distribution modeling methods.
Ecography 29: 773-785.

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G.
Jones, and A. Jarvis. 2005. Very high resolu-
tion interpolated climate surfaces for global land
areas. International Journal of Climatology 25:
1965-1978.

Hijmans, R. J., L. Guarino, and P. Mathur. 2012.
DIVA-GIS Version 7.5 manual. www.diva-gis.
org (accessed 15 January 2015).

Hof, A. R., R. Jansson, and C. Nilsson. 2012. Future
climate change will favour non-specialist
mammals in the (sub)arctics. PloS One 7(12):
p.e52574. 1-11.

Hortal, J., J. M. Lobo, and A. Jiménez-Valverde.
2007. Limitations of biodiversity databases: case
studies on seed-plant diversity in Tenerife, Canary
Islands. Conservation Biology 21: 853-863.

Kadmon, R., O. Farber, and A. Danin. 2004. Effects
of roadside bias on the accuracy of predictive
maps produced by bioclimatic models. Ecological
Applications 14(2): 401-413.

Liu, C., M. White, and G. Newell. 2011. Measuring
and comparing the accuracy of species distribution
models with presence-absence data. Ecography
34:232-243.

Lujan, N. K., and L. M. Page. 2015. Libraries of life.
New York Times 27 February 2015: A25.
Mota-Vargas, C., and O. R. Rojas-Soto. 2012. The
importance of defining the geographic distribu-
tion of species for conservation: the case of
the bearded wood-partridge. Journal for Nature

Conservation 20(1): 10-17.

Newbold, T. 2010. Applications and limitations of
museum data for conservation and ecology, with
particular attention to species distribution models.
Progress in Physical Geography 34(1): 3-22.

NPS. 2006. NPS Museum Handbook. Parts I, II, and III.
www.nps.gov/museum/publications/handbook.
html (accessed on 21 December 2014).

NSTC. 2009. Scientific Collections: Mission-Critical
Infrastructure of Federal Science Agencies.
National Science and Technology Council, Com-
mittee on Science, Interagency Working Group on
Scientific Collections. Office of Science and
Technology Policy, Washington, DC.

R Core Team. 2014. R: A Language and Environment
for Statistical Computing. www.R-project.org
(accessed 21 December 2014).

Rasband, W. S. 2014 [1997-2014]. Image]J. imagej.nih.
gov/ij/ (accessed 15 January 2015).

Rocha, L. A., A. Aleixo, G. Allen, . Almeda, C. C.
Baldwin, M. V. L. Barclay, J. M. Bates, A. M.
Bauer, E Benzoni, C. M. Berns, M. L. Berumen,
D. C. Blackburn, S. Blum, E Bolaiios, R. C. K.
Bowie, R. Britz, R. M. Brown, C. D. Cadena,
K. Carpenter; L. M. Ceriaco, P. Chakrabarty,
G. Chaves, J. H. Choat, K. D. Clements, B. B.
Collette, A. Collins, J. Coyne, J. Cracraft, T.
Daniel, M. R. de Carvalho, K. de Queiroz,
F. Di Dario, R. Drewes, J. P. Dumbacher, A.
Engilis Jr., M. V. Erdmann, W. Eschmeyer,
C. R. Feldman, B. L. Fisher, J. Fjeldsa, P. W.
Fritsch, J. Fuchs, A. Getahun, A. Gill,
M. Gomon, T. Gosliner, G. R. Graves, C. E.
Griswold, R. Guralnick, K. Hartel, K. M.
Helgen, H. Ho, D. T. Iskandar, T. Iwamoto,
Z. Jaafar, H. F. James, D. Johnson, D.
Kavanaugh, N. Knowlton, E. Lacey, H. K.
Larson, P. Last, J. M. Leis, H. Lessios, J. Liebherr,
M. Lowman, D. L. Mahler, V. Mamonekene,
K. Matsuura, G. C. Mayer, H. Mays Jr., J.
McCosker, R. W. McDiarmid, J. McGuire,
M. J. Miller; R. Mooi, R. D. Mooi, C. Moritz,
P. Myers, M. W. Nachman, R. A. Nussbaum, D. 0o
Foighil, L. R. Parenti, J. K Parham, E. Paul, G.
Paulay, J. Pérez-Eman, A. Pérez-Matus,
S. Poe, J. Pogonoski, D. L. Rabosky, J. E.
Randall, J. D. Reimer, D. R. Robertson,
M.-O. Rédel, M. T. Rodrigues, P. Roopnarine, L.
Riiber; M. J. Ryan, K Sheldon, G. Shinohara,
A. Short, W. B. Simison, W. E. Smith-Vaniz,
V. G. Springer, M. Stiassny, J. G. Tello, C. W.
Thompson, T. Trnski, P. Tucker, T. Valqui,
M. Vecchione, E. Verheyen, P. C. Wainwright,
T. A. Wheeler, W. T. White, K. Will, J. T.
Williams, G. Williams, E. O. Wilson, K. Winker,
R. Winterbottom, and C. C. Witt. 2014. Specimen
collection: an essential tool. Science 344(6186):
814-815.

Soberon, J., and A. T. Peterson. 2004. Biodiversity
informatics: managing and applying primary bio-
diversity data. Philosophical Transactions of the
Royal Society of London B 359: 689-698.

Stockwell, D. R. B., and A. T. Peterson. 2002. Effects
of sample size on accuracy of species distribution
models. Ecological Modeling 148: 1-13.

Suarez, A. V., and N. D. Tsutsui. 2004. The value of
museum collections for research and society.
BioScience 54(1): 66-74.

Swets, J. A. 1988. Measuring the accuracy of diagnostic
systems. Science 240(4857): 1285-1293.
Yesson, C., . W. Brewer, T. Sutton, N. Caithness,
J. S. Pahwa, M. Burgess, W. A. Gray, R. J.
White, A. C. Jones, F. A. Bisby, and A.
Culham. 2007. How global is the Global Bio-
diversity Information Facility? PLoS One 11:

el124. 1-10.

(Received 14 April 2015; accepted 28 July 2015. Publi-
cation date 18 September 2015.)


http://www.gbif.org/occurrence/search?taxon_key=4989463
http://www.diva-gis.org
http://www.diva-gis.org
http://www.nps.gov/museum/publications/handbook.html
http://www.nps.gov/museum/publications/handbook.html
http://www.R-project.org
http://www.imagej.nih.gov/ij/
http://www.imagej.nih.gov/ij/
http://www.gbif.org/occurrence/search?taxon_key=4989463

“Collection Bias’ and the Importance of Natural History
Collectionsin Species Habitat Modeling: A Case Study Using
Thoracophorus costalis Erichson (Coleoptera: Staphylinidae:
Osoriinae), with a Critique of GBIF.org

Author(s): Michael L. Ferro and Andrew J. Flick

Source: The Coleopterists Bulletin, 69(3):415-425.

Published By: The Coleopterists Society

DOI: http://dx.doi.org/10.1649/0010-065X-69.3.415

URL: http://www.bioone.org/doi/full/10.1649/0010-065X-69.3.415

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the
biological, ecological, and environmental sciences. BioOne provides a sustainable online
platform for over 170 journals and books published by nonprofit societies, associations,
museums, institutions, and presses.

Y our use of this PDF, the BioOne Web site, and all posted and associated content
indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/page/
terms of _use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial
use. Commercial inquiries or rights and permissions requests should be directed to the
individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers,
academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.


http://dx.doi.org/10.1649/0010-065X-69.3.415
http://www.bioone.org/doi/full/10.1649/0010-065X-69.3.415
http://www.bioone.org
http://www.bioone.org/page/terms_of_use
http://www.bioone.org/page/terms_of_use

	This link is =

